TY - JOUR
T1 - Laplacian spectral moment and Laplacian Estrada index of random graphs
AU - Gao, Nan
AU - Hu, Dan
AU - Liu, Xiaogang
AU - Zhang, Shenggui
N1 - Publisher Copyright:
© 2018 Elsevier Inc.
PY - 2018/5/15
Y1 - 2018/5/15
N2 - Let G be a simple graph with n vertices and let μ1≥μ2≥⋯≥μn=0 be the Laplacian eigenvalues of G. The k-th Laplacian spectral moment of G is defined to be LMk(G)=∑i=1nμi k(G), where k is a non-negative integer; and the Laplacian Estrada index of G is defined as LEE(G)=∑i=1neμi . In this paper, we first estimate these two indices for almost all graphs, and then we give lower and upper bounds to these two indices for almost all multipartite graphs.
AB - Let G be a simple graph with n vertices and let μ1≥μ2≥⋯≥μn=0 be the Laplacian eigenvalues of G. The k-th Laplacian spectral moment of G is defined to be LMk(G)=∑i=1nμi k(G), where k is a non-negative integer; and the Laplacian Estrada index of G is defined as LEE(G)=∑i=1neμi . In this paper, we first estimate these two indices for almost all graphs, and then we give lower and upper bounds to these two indices for almost all multipartite graphs.
KW - Erdős–Rényi random graph
KW - Laplacian Estrada index
KW - Laplacian spectral moment
KW - Random multipartite graph
UR - http://www.scopus.com/inward/record.url?scp=85044337957&partnerID=8YFLogxK
U2 - 10.1016/j.jmaa.2018.01.042
DO - 10.1016/j.jmaa.2018.01.042
M3 - 文章
AN - SCOPUS:85044337957
SN - 0022-247X
VL - 461
SP - 1299
EP - 1307
JO - Journal of Mathematical Analysis and Applications
JF - Journal of Mathematical Analysis and Applications
IS - 2
ER -