Joint embedding learning and sparse regression: A framework for unsupervised feature selection

Chenping Hou, Feiping Nie, Xuelong Li, Dongyun Yi, Yi Wu

Research output: Contribution to journalArticlepeer-review

533 Scopus citations

Abstract

Feature selection has aroused considerable research interests during the last few decades. Traditional learning-based feature selection methods separate embedding learning and feature ranking. In this paper, we propose a novel unsupervised feature selection framework, termed as the joint embedding learning and sparse regression (JELSR), in which the embedding learning and sparse regression are jointly performed. Specifically, the proposed JELSR joins embedding learning with sparse regression to perform feature selection. To show the effectiveness of the proposed framework, we also provide a method using the weight via local linear approximation and adding the ℓ2,1-norm regularization, and design an effective algorithm to solve the corresponding optimization problem. Furthermore, we also conduct some insightful discussion on the proposed feature selection approach, including the convergence analysis, computational complexity, and parameter determination. In all, the proposed framework not only provides a new perspective to view traditional methods but also evokes some other deep researches for feature selection. Compared with traditional unsupervised feature selection methods, our approach could integrate the merits of embedding learning and sparse regression. Promising experimental results on different kinds of data sets, including image, voice data and biological data, have validated the effectiveness of our proposed algorithm.

Original languageEnglish
Article number6565365
Pages (from-to)793-804
Number of pages12
JournalIEEE Transactions on Cybernetics
Volume44
Issue number6
DOIs
StatePublished - Jun 2014
Externally publishedYes

Keywords

  • Embedding learning
  • feature selection
  • pattern recognition
  • sparse regression

Fingerprint

Dive into the research topics of 'Joint embedding learning and sparse regression: A framework for unsupervised feature selection'. Together they form a unique fingerprint.

Cite this