TY - JOUR
T1 - Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances
AU - Han, Yixin
AU - Ruan, Kunpeng
AU - Gu, Junwei
N1 - Publisher Copyright:
© 2022, Tsinghua University Press.
PY - 2022/5
Y1 - 2022/5
N2 - Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry, artificial intelligence and wearable electronics. In this work, silver nanowires (AgNWs) are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent, and boron nitride (BN) is performed to prepare BN nanosheets (BNNS) with the help of isopropyl alcohol and ultrasonication-assisted peeling method, which are compounded with aramid nanofibers (ANF) prepared by chemical dissociation, respectively, and the (BNNS/ANF)-(AgNWs/ANF) thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the “vacuum-assisted filtration and hot-pressing” method. Janus (BNNS/ANF)-(AgNWs/ANF) composite films exhibit “one side insulating, one side conducting” performance, the surface resistivity of the BNNS/ANF surface is 4.7 × 1013 Ω, while the conductivity of the AgNWs/ANF surface is 5,275 S/cm. And Janus (BNNS/ANF)-(AgNWs/ANF) composite film with thickness of 95 µm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K) and superior electromagnetic interference shielding effectiveness of 70 dB. The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa. It also has good temperature-voltage response characteristics (high Joule heating temperature at low supply voltage (5 V, 215.0 °C), fast response time (10 s)), excellent electrical stability and reliability (stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests). [Figure not available: see fulltext.].
AB - Highly thermal conductivity materials with excellent electromagnetic interference shielding and Joule heating performances are ideal for thermal management in the next generation of communication industry, artificial intelligence and wearable electronics. In this work, silver nanowires (AgNWs) are prepared using silver nitrate as the silver source and ethylene glycol as the solvent and reducing agent, and boron nitride (BN) is performed to prepare BN nanosheets (BNNS) with the help of isopropyl alcohol and ultrasonication-assisted peeling method, which are compounded with aramid nanofibers (ANF) prepared by chemical dissociation, respectively, and the (BNNS/ANF)-(AgNWs/ANF) thermal conductivity and electromagnetic interference shielding composite films with Janus structures are prepared by the “vacuum-assisted filtration and hot-pressing” method. Janus (BNNS/ANF)-(AgNWs/ANF) composite films exhibit “one side insulating, one side conducting” performance, the surface resistivity of the BNNS/ANF surface is 4.7 × 1013 Ω, while the conductivity of the AgNWs/ANF surface is 5,275 S/cm. And Janus (BNNS/ANF)-(AgNWs/ANF) composite film with thickness of 95 µm has a high in-plane thermal conductivity coefficient of 8.12 W/(m·K) and superior electromagnetic interference shielding effectiveness of 70 dB. The obtained composite film also has excellent tensile strength of 122.9 MPa and tensile modulus and 2.7 GPa. It also has good temperature-voltage response characteristics (high Joule heating temperature at low supply voltage (5 V, 215.0 °C), fast response time (10 s)), excellent electrical stability and reliability (stable and constant real-time relative resistance under up to 300 cycles and 1,500 s of tensile-bending fatigue work tests). [Figure not available: see fulltext.].
KW - aramid nanofibers
KW - electromagnetic interference shielding performance
KW - Janus structure
KW - Joule heating
KW - thermal conductivity composite film
UR - http://www.scopus.com/inward/record.url?scp=85123522999&partnerID=8YFLogxK
U2 - 10.1007/s12274-022-4159-z
DO - 10.1007/s12274-022-4159-z
M3 - 文章
AN - SCOPUS:85123522999
SN - 1998-0124
VL - 15
SP - 4747
EP - 4755
JO - Nano Research
JF - Nano Research
IS - 5
ER -