Abstract
Monoclinic Li3V2(PO4)3/C (LVP/C) and Li3V1.95Fe0.05(PO4)3/C (LVFP/C) composites were successfully modified by cobalt incorporation. The effects of cobalt incorporation on the structure, morphology and electrochemical performance of the LVP/C and LVFP/C composites were systematically investigated. The results show that most Co exists in the form of CoO and forms a hybrid layer with the carbon coating on the surface of the LVP and LVFP particles; moreover, a small part of Co enters into the LVP or LVFP lattices due to atomic diffusion. Compared with LVP/C and LVFP/C, Co-incorporated samples exhibit better electrochemical performance. In particular, under the common effect of doping and a hybrid layer (carbon and metal oxides) coating, the LVFP/C-Co electrode displays a prominent initial capacity of 124.7 mA h g-1 and a very low capacity fading of ∼0.04% per cycle even after 500 cycles at 20 C. This novel co-modification method with cation doping and a hybrid layer (carbon and metal oxide) coating is a highly effective way to improve the electrochemical performance and has great potential to be easily used to modify other cathode materials with poor electrical conductivity.
Original language | English |
---|---|
Pages (from-to) | 15317-15325 |
Number of pages | 9 |
Journal | Dalton Transactions |
Volume | 45 |
Issue number | 39 |
DOIs | |
State | Published - 2016 |
Externally published | Yes |