Interfacial Design and Construction of Carbon Fiber Composites by Strongly Bound Hydroxyapatite Nanobelt-Carbon Nanotubes for Biological Applications

Qian Gao, Leilei Zhang, Yuming Chen, Hongwen Nie, Bihan Zhang, Hejun Li

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Carbon fiber composites are promising candidates for orthopedic implant applications, which calls for a combination of high mechanical strength and outstanding biotribological properties. In this work, hydroxyapatite nanobelts-carbon nanotubes (HN) were designed and constructed into carbon fiber-anhydrous dicalcium phosphate (DCPA)-epoxy composites (CDE) for simultaneously optimizing the mechanical and biotribological properties via the combined methods of pulse electrochemical deposition and injected chemical vapor deposition. HN provides more nucleation sites for the growth of DCPA and favors the infiltration of epoxy. In addition, HN optimizes the fiber/matrix interface by generating strong interfacial mechanical interlocking. Owing to the synergism of a strongly bound HN, the mechanical and biotribological properties of CDE have demonstrated significant improvement. The tensile strength and elastic modulus of HN-modified CDE (HN-CDE) increase by 52 and 170% compared with CDE, respectively. The wear rate and average friction coefficient of HN-CDE are decreased by 42% and increased by 45% compared with those of CDE, respectively. HN-CDE, with superior mechanical strength and biotribological properties, has high potential as a bone substitute and orthopedic implant.

Original languageEnglish
Pages (from-to)874-882
Number of pages9
JournalACS Applied Bio Materials
Volume6
Issue number2
DOIs
StatePublished - 20 Feb 2023

Keywords

  • biotribological property
  • carbon fiber composites
  • carbon nanotubes
  • hydroxyapatite nanobelts
  • mechanical property
  • strongly bound

Fingerprint

Dive into the research topics of 'Interfacial Design and Construction of Carbon Fiber Composites by Strongly Bound Hydroxyapatite Nanobelt-Carbon Nanotubes for Biological Applications'. Together they form a unique fingerprint.

Cite this