Integrated link-system level simulation platform for the next generation WLAN - IEEE 802.11ax

Wensheng Lin, Bo Li, Mao Yang, Qiao Qu, Zhongjiang Yan, Xiaoya Zuo, Bo Yang

Research output: Contribution to journalConference articlepeer-review

27 Scopus citations

Abstract

As the most widely used standards for wireless local area network (WLAN), IEEE 802.11 standards are continuously amended by introducing new techniques so as to meet the increasing demands. In order to verify the performance of amended protocols, network simulation is considered as a significant method. However, as far as we know, current simulation tools are only for either media access control layer (MAC) or physical layer (PHY). The separate simulation of MAC and PHY can hardly evaluate the performance of IEEE 802.11ax in whole system level for authenticity and objectivity. Hence, the next generation WLAN (IEEE 802.11ax) requires integrated system simulation to take impacts of both MAC and PHY techniques into account. Moreover, IEEE 802.11ax introduces some new techniques, such as orthogonal frequency division multiple access (OFDMA), multi-user multiple input multiple output (MU- MIMO) and non-continuous channel bonding. In this paper, we design and further implement the integrated link-system level simulation platform, which makes it possible to evaluate the new technologies for IEEE 802.11ax. Moreover, we propose a MAC protocol combining OFDMA, MU-MIMO, non-continuous channel bonding and link adaptation and further evaluate its performance. Finally, we validate performance gains of IEEE 802.11ax through simulation, and the simulation results show that IEEE 802.11ax has obviously higher throughput, better quality of service (QoS) and higher multi- channel efficiency. To the best of our knowledge, this is the first work to design and implement simulation platform for IEEE 802.11ax with an integrated link- system level framework.

Original languageEnglish
Article number7841905
JournalProceedings - IEEE Global Communications Conference, GLOBECOM
DOIs
StatePublished - 2016
Event59th IEEE Global Communications Conference, GLOBECOM 2016 - Washington, United States
Duration: 4 Dec 20168 Dec 2016

Fingerprint

Dive into the research topics of 'Integrated link-system level simulation platform for the next generation WLAN - IEEE 802.11ax'. Together they form a unique fingerprint.

Cite this