Influence of velocity on the transient auto-ignition of ethylene jet in a hot coflow

Bing Liu, Yuxue Li, Guoqiang He, Xin Yu, Jian An, Shaohua Zhu, Fei Qin

Research output: Contribution to journalArticlepeer-review

Abstract

The difficulty of ignition is one of the main problems in the combustion chamber of the air-breathing combined engine. Based on this, the transient auto-ignition in the turbulent non-premixed flames of ethylene in a high-speed jet in hot coflow was studied using a newly developed burner. High-speed hydroxyl (OH) planar laser-induced fluorescence (up to 10 kHz) and large eddy simulations (LES) were performed to investigate the auto-ignition process. The experimental conditions included injection velocities of 334–491 m/s, and the effect of jet velocity on the mixing process, ignition process, and flame stabilization mechanisms were investigated. The results showed that the numerical simulation results were consistent with the experimental data. The velocity could affect the auto-ignition position, whereas it had no effect on the auto-ignition time. The increase in fuel jet velocity is beneficial to the mixing of fuel and high-temperature gas and helps to increase the premixed combustion zone during the formation of fire kernels. Moreover, as the velocity increased, the flame status changed from a transitional flame to a lifted flame, the growth rates of the flame volume and total heat release increased, and the flame stabilization mechanism changed from flame propagation to auto-ignition.

Original languageEnglish
Article number130997
JournalFuel
Volume363
DOIs
StatePublished - 1 May 2024

Keywords

  • Auto-ignition process
  • High-speed ethylene jet
  • Large eddy simulation
  • Newly developed burner

Fingerprint

Dive into the research topics of 'Influence of velocity on the transient auto-ignition of ethylene jet in a hot coflow'. Together they form a unique fingerprint.

Cite this