TY - JOUR
T1 - Influence of endwall slotted injection on performance and flow physics in a compressor cascade
AU - Cao, Zhiyuan
AU - Song, Cheng
AU - Liu, Bo
AU - Gao, Limin
N1 - Publisher Copyright:
© IMechE 2020.
PY - 2021/5
Y1 - 2021/5
N2 - Air injection is an effectively methodology to suppress flow separation and to improve blade loading of airfoils and compressors. In order to remove corner separations in a cascade, investigation of endwall slotted injection was carried out numerically in this study. Based on endwall slot schemes of other flow control methods, six different endwall slots were designed, aiming at revealing the axial location effect and pitchwise location effect. For each endwall slot, numerical simulations were performed with six different injection directions to uncover the injection direction effect. Results showed that endwall slotted injection can effectively remove the corner separation. The overall loss coefficient and endwall loss coefficient of the cascade were reduced by 10.3% and 36.8% at most, respectively. Injection from leading edge and mid-chord can reduce endwall loss; however, the optimal axial location of endwall slot is near the trailing edge, where the corner separation is located. Different with other flow control methods, in general, the optimal pitchwise location of endwall slot is not close to suction surface but 0.16 pitch away from it. Injection near the suction surface is more sensitive to injection direction compared with injection at 0.16 pitch away from suction surface. Injection with velocity components both downstream and toward suction surface promises optimal control effect on corner separation. However, at mid-span, trailing edge separation is deteriorated and the flow turning angle is reduced, the flow mechanism being that the low-momentum fluid migrates along spanwise.
AB - Air injection is an effectively methodology to suppress flow separation and to improve blade loading of airfoils and compressors. In order to remove corner separations in a cascade, investigation of endwall slotted injection was carried out numerically in this study. Based on endwall slot schemes of other flow control methods, six different endwall slots were designed, aiming at revealing the axial location effect and pitchwise location effect. For each endwall slot, numerical simulations were performed with six different injection directions to uncover the injection direction effect. Results showed that endwall slotted injection can effectively remove the corner separation. The overall loss coefficient and endwall loss coefficient of the cascade were reduced by 10.3% and 36.8% at most, respectively. Injection from leading edge and mid-chord can reduce endwall loss; however, the optimal axial location of endwall slot is near the trailing edge, where the corner separation is located. Different with other flow control methods, in general, the optimal pitchwise location of endwall slot is not close to suction surface but 0.16 pitch away from it. Injection near the suction surface is more sensitive to injection direction compared with injection at 0.16 pitch away from suction surface. Injection with velocity components both downstream and toward suction surface promises optimal control effect on corner separation. However, at mid-span, trailing edge separation is deteriorated and the flow turning angle is reduced, the flow mechanism being that the low-momentum fluid migrates along spanwise.
KW - air injection
KW - Compressor cascade
KW - corner separation
KW - endwall slotted injection
KW - flow control
UR - http://www.scopus.com/inward/record.url?scp=85088969460&partnerID=8YFLogxK
U2 - 10.1177/0957650920946534
DO - 10.1177/0957650920946534
M3 - 文章
AN - SCOPUS:85088969460
SN - 0957-6509
VL - 235
SP - 319
EP - 334
JO - Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
JF - Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy
IS - 3
ER -