Improving robustness of one-shot voice conversion with deep discriminative speaker encoder

Hongqiang Du, Lei Xie

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

One-shot voice conversion has received significant attention since only one utterance from source speaker and target speaker respectively is required. Moreover, source speaker and target speaker do not need to be seen during training. However, available one-shot voice conversion approaches are not stable for unseen speakers as the speaker embedding extracted from one utterance of an unseen speaker is not reliable. In this paper, we propose a deep discriminative speaker encoder to extract speaker embedding from one utterance more effectively. Specifically, the speaker encoder first integrates residual network and squeeze-and-excitation network to extract discriminative speaker information in frame level by modeling framewise and channel-wise interdependence in features. Then attention mechanism is introduced to further emphasize speaker related information via assigning different weights to frame level speaker information. Finally a statistic pooling layer is used to aggregate weighted frame level speaker information to form utterance level speaker embedding. The experimental results demonstrate that our proposed speaker encoder can improve the robustness of one-shot voice conversion for unseen speakers and outperforms baseline systems in terms of speech quality and speaker similarity.

Original languageEnglish
Title of host publication22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021
PublisherInternational Speech Communication Association
Pages4725-4729
Number of pages5
ISBN (Electronic)9781713836902
DOIs
StatePublished - 2021
Event22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021 - Brno, Czech Republic
Duration: 30 Aug 20213 Sep 2021

Publication series

NameProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
Volume6
ISSN (Print)2308-457X
ISSN (Electronic)1990-9772

Conference

Conference22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021
Country/TerritoryCzech Republic
CityBrno
Period30/08/213/09/21

Keywords

  • One-shot
  • Speaker embedding
  • Voice conversion

Fingerprint

Dive into the research topics of 'Improving robustness of one-shot voice conversion with deep discriminative speaker encoder'. Together they form a unique fingerprint.

Cite this