Image Recovery Matters: A Recovery-Extraction Framework for Robust Fetal Brain Extraction From MR Images

Jian Chen, Ranlin Lu, Shilin Ye, Mengting Guang, Tewodros Megabiaw Tassew, Bin Jing, Guofu Zhang, Geng Chen, Dinggang Shen

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

The extraction of the fetal brain from magnetic resonance (MR) images is a challenging task. In particular, fetal MR images suffer from different kinds of artifacts introduced during the image acquisition. Among those artifacts, intensity inhomogeneity is a common one affecting brain extraction. In this work, we propose a deep learning-based recovery-extraction framework for fetal brain extraction, which is particularly effective in handling fetal MR images with intensity inhomogeneity. Our framework involves two stages. First, the artifact-corrupted images are recovered with the proposed generative adversarial learning-based image recovery network with a novel region-of-darkness discriminator that enforces the network focusing on artifacts of the images. Second, we propose a brain extraction network for more effective fetal brain segmentation by strengthening the association between lower- and higher-level features as well as suppressing task-irrelevant features. Thanks to the proposed recovery-extraction strategy, our framework is able to accurately segment fetal brains from artifact-corrupted MR images. The experiments show that our framework achieves promising performance in both quantitative and qualitative evaluations, and outperforms state-of-the-art methods in both image recovery and fetal brain extraction.

Original languageEnglish
Pages (from-to)823-834
Number of pages12
JournalIEEE Journal of Biomedical and Health Informatics
Volume28
Issue number2
DOIs
StatePublished - 1 Feb 2024

Keywords

  • Fetal MRI
  • brain extraction
  • image recovery
  • image segmentation
  • intensity inhomogeneity

Fingerprint

Dive into the research topics of 'Image Recovery Matters: A Recovery-Extraction Framework for Robust Fetal Brain Extraction From MR Images'. Together they form a unique fingerprint.

Cite this