TY - JOUR
T1 - How does a tiny terminal alkynyl end group drive fully hydrophilic homopolymers to self-assemble into multicompartment vesicles and flower-like complex particles?
AU - Liu, Tingting
AU - Tian, Wei
AU - Zhu, Yunqing
AU - Bai, Yang
AU - Yan, Hongxia
AU - Du, Jianzhong
PY - 2014/9/7
Y1 - 2014/9/7
N2 - It is a theoretical and technical challenge to construct well-defined nanostructures such as vesicles from fully hydrophilic homopolymers in pure water. In this paper, we incorporate one terminal alkynyl group into a fully hydrophilic linear or non-linear homopolymer to drive its unusual self-assembly in aqueous solution to form multicompartment vesicles, spherical compound micelles, flower-like complex particles, etc., which have been confirmed by transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic/static light scattering (DLS/SLS) and drug encapsulation experiments. The formation of poly(N-isopropyl acrylamide) (NIPAM) and poly[oligo(ethylene glycol) methacrylate] (POEGMA475) self-assemblies is mainly determined by the terminal alkynyl group itself (typically 1-3 wt%) while it is independent of other factors such as traditional hydrophobic-hydrophilic balance. Moreover, upon increasing the chain length of PNIPAM homopolymers, multicompartment vesicles, spherical micelles, and large flower-like complex particles can be obtained during the self-assembly process. In contrast, smaller micelles were formed when the kind of terminal alkynyl group attached to the PNIPAM chain was changed from a propargyl isobutyrate group to a (di)propargyl 2-methylpropionamide group. Particularly, a long chain hyperbranched structure with lots of terminal alkynyl groups induces the formation of vesicles. Also, the encapsulation experiment of doxorubicin hydrochloride was employed to further distinguish vesicular and micellar nanostructures. Additionally, the terminal alkynyl group-driven self-assembly has been applied to hydrophilic POEGMA475 homopolymers to afford similar nanostructures to PNIPAM homopolymers such as multicompartment vesicles and spherical compound micelles. Our study has opened up a new way to prepare hydrophilic homopolymer self-assemblies with tunable morphology. This journal is
AB - It is a theoretical and technical challenge to construct well-defined nanostructures such as vesicles from fully hydrophilic homopolymers in pure water. In this paper, we incorporate one terminal alkynyl group into a fully hydrophilic linear or non-linear homopolymer to drive its unusual self-assembly in aqueous solution to form multicompartment vesicles, spherical compound micelles, flower-like complex particles, etc., which have been confirmed by transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic/static light scattering (DLS/SLS) and drug encapsulation experiments. The formation of poly(N-isopropyl acrylamide) (NIPAM) and poly[oligo(ethylene glycol) methacrylate] (POEGMA475) self-assemblies is mainly determined by the terminal alkynyl group itself (typically 1-3 wt%) while it is independent of other factors such as traditional hydrophobic-hydrophilic balance. Moreover, upon increasing the chain length of PNIPAM homopolymers, multicompartment vesicles, spherical micelles, and large flower-like complex particles can be obtained during the self-assembly process. In contrast, smaller micelles were formed when the kind of terminal alkynyl group attached to the PNIPAM chain was changed from a propargyl isobutyrate group to a (di)propargyl 2-methylpropionamide group. Particularly, a long chain hyperbranched structure with lots of terminal alkynyl groups induces the formation of vesicles. Also, the encapsulation experiment of doxorubicin hydrochloride was employed to further distinguish vesicular and micellar nanostructures. Additionally, the terminal alkynyl group-driven self-assembly has been applied to hydrophilic POEGMA475 homopolymers to afford similar nanostructures to PNIPAM homopolymers such as multicompartment vesicles and spherical compound micelles. Our study has opened up a new way to prepare hydrophilic homopolymer self-assemblies with tunable morphology. This journal is
UR - http://www.scopus.com/inward/record.url?scp=84905046761&partnerID=8YFLogxK
U2 - 10.1039/c4py00501e
DO - 10.1039/c4py00501e
M3 - 文章
AN - SCOPUS:84905046761
SN - 1759-9954
VL - 5
SP - 5077
EP - 5088
JO - Polymer Chemistry
JF - Polymer Chemistry
IS - 17
ER -