TY - GEN
T1 - Hot-wire measurements in non-calibrated conditions
AU - Wang, Yuexin
AU - Guo, Tao
AU - Zhu, Huiren
N1 - Publisher Copyright:
© 2021 American Society of Mechanical Engineers (ASME). All rights reserved.
PY - 2021
Y1 - 2021
N2 - The hot-wire anemometer is a widely used instrumentation to determine flow velocity and to investigate flow quality. The main objective of this paper is to expand the application range of the hot wire by improving the measurement accuracy under non-calibrated temperature and pressure. According to the four kinds of heat transfer derivations, a new calibration method was carried out. Considering natural convection, heat radiation and heat conduction, and forced convection heat transfer, it can be found that the forced convection heat transfer plays a dominant role, and the main factor causing the change is the temperature. Forced convection heat transfer also changes with pressure, which affects heat transfer by affecting kinematic viscosity. Based on this, a new calibration method and formula of velocity were put forward, which can be used over a range of temperature and pressure, considering the changes of physical property of the calibration scheme were verified by numerical simulation. The numerical calculated results were compared, the average error was 0.69%, the maximum error was 2.9%. The results show that the calibration method has high accuracy in a certain range. This paper provides a new solution for the calibration of hot-wire anemometer, and expands the adaptability of hot-wire anemometer in the measurement of severe external conditions.
AB - The hot-wire anemometer is a widely used instrumentation to determine flow velocity and to investigate flow quality. The main objective of this paper is to expand the application range of the hot wire by improving the measurement accuracy under non-calibrated temperature and pressure. According to the four kinds of heat transfer derivations, a new calibration method was carried out. Considering natural convection, heat radiation and heat conduction, and forced convection heat transfer, it can be found that the forced convection heat transfer plays a dominant role, and the main factor causing the change is the temperature. Forced convection heat transfer also changes with pressure, which affects heat transfer by affecting kinematic viscosity. Based on this, a new calibration method and formula of velocity were put forward, which can be used over a range of temperature and pressure, considering the changes of physical property of the calibration scheme were verified by numerical simulation. The numerical calculated results were compared, the average error was 0.69%, the maximum error was 2.9%. The results show that the calibration method has high accuracy in a certain range. This paper provides a new solution for the calibration of hot-wire anemometer, and expands the adaptability of hot-wire anemometer in the measurement of severe external conditions.
UR - http://www.scopus.com/inward/record.url?scp=85115446286&partnerID=8YFLogxK
U2 - 10.1115/GT2021-59259
DO - 10.1115/GT2021-59259
M3 - 会议稿件
AN - SCOPUS:85115446286
T3 - Proceedings of the ASME Turbo Expo
BT - Controls, Diagnostics, and Instrumentation; Cycle Innovations; Cycle Innovations
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition, GT 2021
Y2 - 7 June 2021 through 11 June 2021
ER -