Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities

Junwei Gu, Chaobo Liang, Xiaomin Zhao, Bin Gan, Hua Qiu, Yonqiang Guo, Xutong Yang, Qiuyu Zhang, De Yi Wang

Research output: Contribution to journalArticlepeer-review

379 Scopus citations

Abstract

A highly efficient phenylphosphonate-based flame-retardant epoxy resin (FREP) was firstly prepared from phenylphosphonic dichloride (PPDCl) and allylamine (AA). Functionalized graphite nanoplatelets (fGNPs) fillers were then performed to fabricate the fGNPs/FREP nanocomposites via mixing followed by casting method. The thermally conductive coefficient (λ), thermal diffusivity (α), flame retardancy, electrical conductivities and thermal stabilities of the fGNPs/FREP nanocomposites were all enhanced with the increasing addition of fGNPs fillers. The λ and α value of the fGNPs/FREP nanocomposite with 30 wt% fGNPs fillers was increased to 1.487 W/mK and 0.990 mm2/s, about 7 times and 6 times for that of pure FREP matrix (0.234 W/mK and 0.170 mm2/s), respectively. And the corresponding electrical conductivity was also increased to 5.0 × 10−4 S/cm, far better than that of pure FREP matrix (1.0 × 10−12 S/cm). In comparison with that of pure FREP, the THR and TSP value of the fGNPs/FREP nanocomposite with 15 wt% fGNPs fillers was decreased by 37% and 32%, respectively, char yield was increased by 13%, and LOI value was increased from 31% to 37%. However, the peak of heat release rate of the fGNPs/FREP nanocomposite became worse due to its high thermal conductivity. Nanoindentation revealed that there was negligible influence of fGNPs fillers on the hardness values and Young's modulus of the fGNPs/FREP nanocomposites.

Original languageEnglish
Pages (from-to)83-89
Number of pages7
JournalComposites Science and Technology
Volume139
DOIs
StatePublished - 8 Feb 2017

Keywords

  • Casting
  • Polymer-matrix composites (PMCs)
  • Thermal properties
  • Thermogravimetric analysis (TGA)

Fingerprint

Dive into the research topics of 'Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities'. Together they form a unique fingerprint.

Cite this