TY - JOUR
T1 - High efficiency stable planar perovskite solar cells via heavy water additive
AU - Liu, Congcong
AU - Su, Haijun
AU - Guo, Min
AU - Zhai, Peng
AU - Liu, Lin
AU - Fu, Hengzhi
N1 - Publisher Copyright:
© 2022 Elsevier B.V.
PY - 2022/9/15
Y1 - 2022/9/15
N2 - Although great advances have been made in low-cost manufacturing of air-processed perovskite solar cells (PSCs), the moisture degradation of halide perovskite films remains a key problem to be urgently solved. High-quality perovskite films with large grains and uniform coverage are essential to enhance the performance of PSCs with high efficiency and moisture stability. Herein, heavy water (D2O) is employed as an additive in PbI2 precursor to manipulate the average grain size and enhance surface coverage of perovskite film, resulting in improved humidity stability of PSCs under ambient conditions. It is found that the introduction of D2O effectively improves the quality of perovskite film and significantly reduces the grain boundaries for reduced carrier recombination. The optimal concentration of D2O can boost the in-plane growth of perovskite films and increase the average grain size of perovskite from 494 nm to 717 nm. Consequently, the PSCs based on the perovskite film with 1% D2O exhibits a superior PCE of 21.66% (0.055 cm2) in small area, which is 9.78% higher than that of the control device (19.73%). In addition, the large-area (1 cm2) PSCs with 1% D2O show an efficiency of 20.02%. The unencapsulated PSCs made with 1% D2O can remain 95% of its initial PCE after aging 60 days in ambient air under dark with 20–25% relative humidity.
AB - Although great advances have been made in low-cost manufacturing of air-processed perovskite solar cells (PSCs), the moisture degradation of halide perovskite films remains a key problem to be urgently solved. High-quality perovskite films with large grains and uniform coverage are essential to enhance the performance of PSCs with high efficiency and moisture stability. Herein, heavy water (D2O) is employed as an additive in PbI2 precursor to manipulate the average grain size and enhance surface coverage of perovskite film, resulting in improved humidity stability of PSCs under ambient conditions. It is found that the introduction of D2O effectively improves the quality of perovskite film and significantly reduces the grain boundaries for reduced carrier recombination. The optimal concentration of D2O can boost the in-plane growth of perovskite films and increase the average grain size of perovskite from 494 nm to 717 nm. Consequently, the PSCs based on the perovskite film with 1% D2O exhibits a superior PCE of 21.66% (0.055 cm2) in small area, which is 9.78% higher than that of the control device (19.73%). In addition, the large-area (1 cm2) PSCs with 1% D2O show an efficiency of 20.02%. The unencapsulated PSCs made with 1% D2O can remain 95% of its initial PCE after aging 60 days in ambient air under dark with 20–25% relative humidity.
KW - Average grain size
KW - Heavy water additive
KW - High-quality perovskite films
KW - Moisture stability
KW - Perovskite solar cells
UR - http://www.scopus.com/inward/record.url?scp=85133163376&partnerID=8YFLogxK
U2 - 10.1016/j.solmat.2022.111861
DO - 10.1016/j.solmat.2022.111861
M3 - 文章
AN - SCOPUS:85133163376
SN - 0927-0248
VL - 245
JO - Solar Energy Materials and Solar Cells
JF - Solar Energy Materials and Solar Cells
M1 - 111861
ER -