TY - GEN
T1 - Hierarchical Prior Mining for Non-local Multi-View Stereo
AU - Ren, Chunlin
AU - Xu, Qingshan
AU - Zhang, Shikun
AU - Yang, Jiaqi
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - As a fundamental problem in computer vision, multi-view stereo (MVS) aims at recovering the 3D geometry of a target from a set of 2D images. Recent advances in MVS have shown that it is important to perceive non-local structured information for recovering geometry in low-textured areas. In this work, we propose a Hierarchical Prior Mining for Non-local Multi-View Stereo (HPM-MVS). The key characteristics are the following techniques that exploit non-local information to assist MVS: 1) A Non-local Extensible Sampling Pattern (NESP), which is able to adaptively change the size of sampled areas without becoming snared in locally optimal solutions. 2) A new approach to leverage non-local reliable points and construct a planar prior model based on K-Nearest Neighbor (KNN), to obtain potential hypotheses for the regions where prior construction is challenging. 3) A Hierarchical Prior Mining (HPM) framework, which is used to mine extensive non-local prior information at different scales to assist 3D model recovery, this strategy can achieve a considerable balance between the reconstruction of details and low-textured areas. Experimental results on the ETH3D and Tanks & Temples have verified the superior performance and strong generalization capability of our method. Our code will be available at https://github.com/CLinvx/HPM-MVS.
AB - As a fundamental problem in computer vision, multi-view stereo (MVS) aims at recovering the 3D geometry of a target from a set of 2D images. Recent advances in MVS have shown that it is important to perceive non-local structured information for recovering geometry in low-textured areas. In this work, we propose a Hierarchical Prior Mining for Non-local Multi-View Stereo (HPM-MVS). The key characteristics are the following techniques that exploit non-local information to assist MVS: 1) A Non-local Extensible Sampling Pattern (NESP), which is able to adaptively change the size of sampled areas without becoming snared in locally optimal solutions. 2) A new approach to leverage non-local reliable points and construct a planar prior model based on K-Nearest Neighbor (KNN), to obtain potential hypotheses for the regions where prior construction is challenging. 3) A Hierarchical Prior Mining (HPM) framework, which is used to mine extensive non-local prior information at different scales to assist 3D model recovery, this strategy can achieve a considerable balance between the reconstruction of details and low-textured areas. Experimental results on the ETH3D and Tanks & Temples have verified the superior performance and strong generalization capability of our method. Our code will be available at https://github.com/CLinvx/HPM-MVS.
UR - http://www.scopus.com/inward/record.url?scp=85185868918&partnerID=8YFLogxK
U2 - 10.1109/ICCV51070.2023.00334
DO - 10.1109/ICCV51070.2023.00334
M3 - 会议稿件
AN - SCOPUS:85185868918
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 3588
EP - 3597
BT - Proceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Y2 - 2 October 2023 through 6 October 2023
ER -