Hierarchical Honeycomb-Structured Electret/Triboelectric Nanogenerator for Biomechanical and Morphing Wing Energy Harvesting

Kai Tao, Zhensheng Chen, Haiping Yi, Ruirong Zhang, Qiang Shen, Jin Wu, Lihua Tang, Kangqi Fan, Yongqing Fu, Jianmin Miao, Weizheng Yuan

Research output: Contribution to journalArticlepeer-review

120 Scopus citations

Abstract

Flexible, compact, lightweight and sustainable power sources are indispensable for modern wearable and personal electronics and small-unmanned aerial vehicles (UAVs). Hierarchical honeycomb has the unique merits of compact mesostructures, excellent energy absorption properties and considerable weight to strength ratios. Herein, a honeycomb-inspired triboelectric nanogenerator (h-TENG) is proposed for biomechanical and UAV morphing wing energy harvesting based on contact triboelectrification wavy surface of cellular honeycomb structure. The wavy surface comprises a multilayered thin film structure (combining polyethylene terephthalate, silver nanowires and fluorinated ethylene propylene) fabricated through high-temperature thermoplastic molding and wafer-level bonding process. With superior synchronization of large amounts of energy generation units with honeycomb cells, the manufactured h-TENG prototype produces the maximum instantaneous open-circuit voltage, short-circuit current and output power of 1207 V, 68.5 μA and 12.4 mW, respectively, corresponding to a remarkable peak power density of 0.275 mW cm−3 (or 2.48 mW g−1) under hand pressing excitations. Attributed to the excellent elastic property of self-rebounding honeycomb structure, the flexible and transparent h-TENG can be easily pressed, bent and integrated into shoes for real-time insole plantar pressure mapping. The lightweight and compact h-TENG is further installed into a morphing wing of small UAVs for efficiently converting the flapping energy of ailerons into electricity for the first time. This research demonstrates this new conceptualizing single h-TENG device's versatility and viability for broad-range real-world application scenarios.[Figure not available: see fulltext.]

Original languageEnglish
Article number123
JournalNano-Micro Letters
Volume13
Issue number1
DOIs
StatePublished - Dec 2021

Keywords

  • Electret power generation
  • Honeycomb-inspired structure
  • Morphing wing energy harvesting
  • Self-powered insole pressure mapping
  • Triboelectric nanogenerator

Fingerprint

Dive into the research topics of 'Hierarchical Honeycomb-Structured Electret/Triboelectric Nanogenerator for Biomechanical and Morphing Wing Energy Harvesting'. Together they form a unique fingerprint.

Cite this