Heterogeneous image feature integration via multi-modal spectral clustering

Xiao Cai, Feiping Nie, Heng Huang, Farhad Kamangar

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

260 Scopus citations

Abstract

In recent years, more and more visual descriptors have been proposed to describe objects and scenes appearing in images. Different features describe different aspects of the visual characteristics. How to combine these heterogeneous features has become an increasing critical problem. In this paper, we propose a novel approach to unsupervised integrate such heterogeneous features by performing multi-modal spectral clustering on unlabeled images and unsegmented images. Considering each type of feature as one modal, our new multi-modal spectral clustering (MMSC) algorithm is to learn a commonly shared graph Laplacian matrix by unifying different modals (image features). A non-negative relaxation is also added in our method to improve the robustness and efficiency of image clustering. We applied our MMSC method to integrate five types of popularly used image features, including SIFT, HOG, GIST, LBP, CENTRIST and evaluated the performance by two benchmark data sets: Caltech-101 and MSRC-v1. Compared with existing unsupervised scene and object categorization methods, our approach always achieves superior performances measured by three standard clustering evaluation metrices.

Original languageEnglish
Title of host publication2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011
PublisherIEEE Computer Society
Pages1977-1984
Number of pages8
ISBN (Print)9781457703942
DOIs
StatePublished - 2011
Externally publishedYes

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Fingerprint

Dive into the research topics of 'Heterogeneous image feature integration via multi-modal spectral clustering'. Together they form a unique fingerprint.

Cite this