Abstract
The perovskite-based tandem solar cell is one of the promising technological pathways to achieve high efficiency. However, the mixed-halide perovskite top cell is prone to phase segregation under continuous illumination, which leads to rapid degradation of the tandem device's overall power output. To tackle this challenge, ligand-free lead selenide (PbSe) nanocrystals are introduced into the precursor solution to promote the heteroepitaxial growth of mixed-halide perovskite. The incorporation of PbSe results in a high-quality perovskite film with excellent uniformity and low defect density, effectively suppressing halide phase segregation. This improved perovskite thin film enables the fabrication of wide-bandgap (1.68 eV) perovskite Cs0.05(FA0.77MA0.23)0.95Pb(I0.77Br0.23)3 p-i-n devices, achieving a power conversion efficiency (PCE) of 22.87% and a fill factor (FF) of 84.79%. After 1000 h of maximum power point (MPP) tracking under 1-sun continuous illumination, the perovskite solar cells retain 88% of their initial efficiency. Additionally, by mechanically stacking the semi-transparent perovskite on copper indium gallium selenide (CIGS) solar cells, the 4-terminal tandem cell has demonstrated a PCE of 28.24%.
Original language | English |
---|---|
Journal | Advanced Energy Materials |
DOIs | |
State | Accepted/In press - 2025 |
Keywords
- mixed-halide perovskite
- phase segregation
- tandem cells