HandS3C: 3D Hand Mesh Reconstruction with State Space Spatial Channel Attention from RGB images

Zixun Jiao, Xihan Wang, Zhaoqiang Xia, Lianhe Shao, Quanli Gao

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Reconstructing the hand mesh from one single RGB image is a challenging task because hands are often occluded by other objects. Most previous works attempt to explore more additional information and adopt attention mechanisms for improving 3D reconstruction performance, while it would increase computational complexity simultaneously. To achieve a performance preserving architecture with high computational efficiency, in this work, we propose a simple but effective 3D hand mesh reconstruction network (i.e., HandS3C), which is the first time to incorporate state space model into the task of hand mesh reconstruction. In the network, we design a novel state-space spatial-channel attention module that extends the effective receptive field, extracts hand features in the spatial dimension, and enhances regional features of hands in the channel dimension. This helps to reconstruct a complete and detailed hand mesh. Extensive experiments conducted on well-known datasets facing heavy occlusions (such as FREIHAND, DEXYCB, and HO3D) demonstrate that our proposed HandS3C achieves state-of-the-art performance while maintaining minimal parameters. Code can be available in https://github.com/JiaoZixun/HandS3C.

Original languageEnglish
Title of host publication2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025 - Proceedings
EditorsBhaskar D Rao, Isabel Trancoso, Gaurav Sharma, Neelesh B. Mehta
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350368741
DOIs
StatePublished - 2025
Event2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025 - Hyderabad, India
Duration: 6 Apr 202511 Apr 2025

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Conference

Conference2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
Country/TerritoryIndia
CityHyderabad
Period6/04/2511/04/25

Keywords

  • 3D Hand Mesh Reconstruction
  • Deep Learning
  • Effective Receptive Field
  • Human-computer Interaction
  • State Space Model

Fingerprint

Dive into the research topics of 'HandS3C: 3D Hand Mesh Reconstruction with State Space Spatial Channel Attention from RGB images'. Together they form a unique fingerprint.

Cite this