TY - GEN
T1 - Globally and locally consistent unsupervised projection
AU - Wang, Hua
AU - Nie, Feiping
AU - Huang, Heng
N1 - Publisher Copyright:
Copyright © 2014, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2014
Y1 - 2014
N2 - In this paper, we propose an unsupervised projection method for feature extraction to preserve both global and local consistencies of the input data in the projected space. Traditional unsupervised feature extraction methods, such as principal component analysis (PCA) and locality preserving projections (LPF), can only explore either the global or local geometric structures of the input data, but not the both at the same time. In our new method, we introduce a new measurement using the neighborhood data variances to assess the data locality, by which we propose to learn an optimal projection by rewarding both the global and local structures of the input data. The formulated optimization problem is challenging to solve, because it ends up a trace ratio minimization problem. In this paper, as an important theoretical contribution, we propose a simple yet efficient optimization algorithm to solve the trace ratio problem with theoretically proved convergence. Extensive experiments have been performed on six benchmark data sets, where the promising results validate the proposed method.
AB - In this paper, we propose an unsupervised projection method for feature extraction to preserve both global and local consistencies of the input data in the projected space. Traditional unsupervised feature extraction methods, such as principal component analysis (PCA) and locality preserving projections (LPF), can only explore either the global or local geometric structures of the input data, but not the both at the same time. In our new method, we introduce a new measurement using the neighborhood data variances to assess the data locality, by which we propose to learn an optimal projection by rewarding both the global and local structures of the input data. The formulated optimization problem is challenging to solve, because it ends up a trace ratio minimization problem. In this paper, as an important theoretical contribution, we propose a simple yet efficient optimization algorithm to solve the trace ratio problem with theoretically proved convergence. Extensive experiments have been performed on six benchmark data sets, where the promising results validate the proposed method.
UR - http://www.scopus.com/inward/record.url?scp=84908151956&partnerID=8YFLogxK
M3 - 会议稿件
AN - SCOPUS:84908151956
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 1328
EP - 1333
BT - Proceedings of the National Conference on Artificial Intelligence
PB - AI Access Foundation
T2 - 28th AAAI Conference on Artificial Intelligence, AAAI 2014, 26th Innovative Applications of Artificial Intelligence Conference, IAAI 2014 and the 5th Symposium on Educational Advances in Artificial Intelligence, EAAI 2014
Y2 - 27 July 2014 through 31 July 2014
ER -