GAMC: An Unsupervised Method for Fake News Detection Using Graph Autoencoder with Masking

Shu Yin, Peican Zhu, Lianwei Wu, Chao Gao, Zhen Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

25 Scopus citations

Abstract

With the rise of social media, the spread of fake news has become a significant concern, potentially misleading public perceptions and impacting social stability. Although deep learning methods like CNNs, RNNs, and Transformer-based models like BERT have enhanced fake news detection. However, they primarily focus on content and do not consider social context during news propagation. Graph-based techniques have incorporated the social context but are limited by the need for large labeled datasets. To address these challenges, this paper introduces GAMC, an unsupervised fake news detection technique using the Graph Autoencoder with Masking and Contrastive learning. By leveraging both the context and content of news propagation as self-supervised signals, our method reduces the dependency on labeled datasets. Specifically, GAMC begins by applying data augmentation to the original news propagation graphs. Subsequently, these augmented graphs are encoded using a graph encoder and subsequently reconstructed via a graph decoder. Finally, a composite loss function that encompasses both reconstruction error and contrastive loss is designed. Firstly, it ensures the model can effectively capture the latent features, based on minimizing the discrepancy between reconstructed and original graph representations. Secondly, it aligns the representations of augmented graphs that originate from the same source. Experiments on the real-world dataset validate the effectiveness of our method.

Original languageEnglish
Title of host publicationTechnical Tracks 14
EditorsMichael Wooldridge, Jennifer Dy, Sriraam Natarajan
PublisherAssociation for the Advancement of Artificial Intelligence
Pages347-355
Number of pages9
Edition1
ISBN (Electronic)1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879
DOIs
StatePublished - 25 Mar 2024
Event38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, Canada
Duration: 20 Feb 202427 Feb 2024

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
Number1
Volume38
ISSN (Print)2159-5399
ISSN (Electronic)2374-3468

Conference

Conference38th AAAI Conference on Artificial Intelligence, AAAI 2024
Country/TerritoryCanada
CityVancouver
Period20/02/2427/02/24

Fingerprint

Dive into the research topics of 'GAMC: An Unsupervised Method for Fake News Detection Using Graph Autoencoder with Masking'. Together they form a unique fingerprint.

Cite this