Abstract
Nano-ZnO was successfully grafted with 2,4-toluenediisocyanate (TDI) and β-aminoethyltrimethoxylsilane (OB551) to avoid the agglomeration of nano-ZnO in composite. The hybrid glass/PTFE fabric composites reinforced with the untreated, OB551 and TDI modified nano-ZnO, respectively, were prepared by dip-coating of the hybrid fabric in a phenolic adhesive resin containing the nanoparticles to be incorporated and the successive curing. The friction and wear behaviors of various nano-ZnO reinforced hybrid glass/PTFE fabric composites sliding against AISI-1045 steel in a pin-on-disk configuration were evaluated on a Xuanwu-III high-temperature friction and wear tester, with the unfilled one as a reference. The morphologies of the worn surfaces of the composites and of the counterpart pins were analyzed using scanning electron microscopy. In addition, FTIR spectrum was taken to characterize the untreated and treated nano-ZnO. It is found that the untreated and treated nano-ZnO reinforced hybrid glass/PTFE fabric composites exhibit improved wear resistance and friction-reduction in comparison with the unfilled one. The TDI modified nano-ZnO reinforced composite can obtain the best friction and wear performance under different applied load; followed by the OB551 modified nano-ZnO reinforced one. Sliding conditions, such as environmental temperature and lubricating condition, significantly affect the tribo-performances of the unfilled and filled hybrid glass/PTFE fabric composites.
Original language | English |
---|---|
Pages (from-to) | 311-318 |
Number of pages | 8 |
Journal | Wear |
Volume | 265 |
Issue number | 3-4 |
DOIs | |
State | Published - 31 Jul 2008 |
Externally published | Yes |
Keywords
- Friction and wear
- Hybrid glass/PTFE fabric composite
- Nano-ZnO filler
- Phenolic resin
- Surface treatment