Formation and improvement of surface waviness for additive manufacturing 5A06 aluminium alloy component with GTAW system

Haibin Geng, Jinglong Li, Jiangtao Xiong, Xin Lin, Dan Huang, Fusheng Zhang

Research output: Contribution to journalArticlepeer-review

46 Scopus citations

Abstract

Purpose: As known, the wire and arc additive manufacture technique can achieve stable process control, which is represented with periodic surface waviness, when using empirical methods or feedback control system. But it is usually a tedious work to further reduce it using trial and error method. The purpose of this paper is to unveil the formation mechanism of surface waviness and develop a method to diminish it. Design/methodology/approach: Two forming mechanisms, wetting and spreading and remelting, are unveiled by cross-section observation. A discriminant is established to differentiate which mechanism is valid to dominate the forming process under the given process parameters. Findings: Finally, a theoretical method is developed to optimize surface waviness, even forming a smooth surface by establishing a matching relation between heat input (line energy) and materials input (the ratio of wire feed speed to travel speed). Originality/value: Formation mechanisms are revealed by observing cross-section morphology. A discriminant is established to differentiate which mechanism is valid to dominate the forming process under the given process parameters. A mathematical model is developed to optimize surface waviness, even forming a smooth surface through establishing a matching relation between heat input (line energy) and materials input (the ratio of wire feed speed to travel speed).

Original languageEnglish
Pages (from-to)342-350
Number of pages9
JournalRapid Prototyping Journal
Volume24
Issue number2
DOIs
StatePublished - 2018

Keywords

  • Cross-section profile
  • Formation mechanism
  • Matching relation
  • Surface waviness
  • Wire and arc additive manufacture

Fingerprint

Dive into the research topics of 'Formation and improvement of surface waviness for additive manufacturing 5A06 aluminium alloy component with GTAW system'. Together they form a unique fingerprint.

Cite this