Forging the graphs: A low rank and positive semidefinite graph learning approach

Dijun Luo, Chris Ding, Heng Huang, Feiping Nie

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

19 Scopus citations

Abstract

In many graph-based machine learning and data mining approaches, the quality of the graph is critical. However, in real-world applications, especially in semisupervised learning and unsupervised learning, the evaluation of the quality of a graph is often expensive and sometimes even impossible, due the cost or the unavailability of ground truth. In this paper, we proposed a robust approach with convex optimization to "forge" a graph: with an input of a graph, to learn a graph with higher quality. Our major concern is that an ideal graph shall satisfy all the following constraints: non-negative, symmetric, low rank, and positive semidefinite. We develop a graph learning algorithm by solving a convex optimization problem and further develop an efficient optimization to obtain global optimal solutions with theoretical guarantees. With only one non-sensitive parameter, our method is shown by experimental results to be robust and achieve higher accuracy in semi-supervised learning and clustering under various settings. As a preprocessing of graphs, our method has a wide range of potential applications machine learning and data mining.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 25
Subtitle of host publication26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Pages2960-2968
Number of pages9
StatePublished - 2012
Externally publishedYes
Event26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012 - Lake Tahoe, NV, United States
Duration: 3 Dec 20126 Dec 2012

Publication series

NameAdvances in Neural Information Processing Systems
Volume4
ISSN (Print)1049-5258

Conference

Conference26th Annual Conference on Neural Information Processing Systems 2012, NIPS 2012
Country/TerritoryUnited States
CityLake Tahoe, NV
Period3/12/126/12/12

Fingerprint

Dive into the research topics of 'Forging the graphs: A low rank and positive semidefinite graph learning approach'. Together they form a unique fingerprint.

Cite this