Abstract
Folate receptor-targeted multifunctional fluorescent magnetic nanoparticles (FMNPs) composed of cores containing iron oxide nanocrystals and amphiphilic oligo(p-phenyleneethynylene) shells with multimodal imaging capability were successfully prepared through a convenient hydrophobic encapsulation approach. The iron oxide nanoparticles in the core provided T2-weighted magnetic resonance imaging (MRI), whereas the amphiphilic oligomers on the surface of the nanoparticles introduced good water-solubility, biocompatibility, excellent fluorescent properties and cancer-targeting. These nanoparticles exhibited superparamagnetic properties with saturation magnetization (Ms) of 23 emu g-1 and a transverse relaxivity rate of 140.89 mM-1 s-1. In vitro studies indicated that the dual-modal FMNPs can serve as an effective two-photon fluorescent and a magnetic probe to achieve the targeted imaging of Hela cells without obvious cytotoxicity. In vivo two-photon fluorescence and MRI results demonstrated that the FMNPs were able to preferentially accumulate in tumor tissues to allow dual-modal detection of tumors in a living body. These studies provided insight in developing novel multifunctional probes for multimodal imaging, which would play an important role for theranostics in biomedical science.
Original language | English |
---|---|
Pages (from-to) | 8907-8919 |
Number of pages | 13 |
Journal | Nanoscale |
Volume | 7 |
Issue number | 19 |
DOIs | |
State | Published - 21 May 2015 |
Externally published | Yes |