Abstract
We propose a unified manifold learning framework for semi-supervised and unsupervised dimension reduction by employing a simple but effective linear regression function to map the new data points. For semi-supervised dimension reduction, we aim to find the optimal prediction labels F for all the training samples X, the linear regression function h(X) and the regression residue F 0 = F - h (X) simultaneously. Our new objective function integrates two terms related to label fitness and manifold smoothness as well as a flexible penalty term defined on the residue F0. Our Semi-Supervised learning framework, referred to as flexible manifold embedding (FME), can effectively utilize label information from labeled data as well as a manifold structure from both labeled and unlabeled data. By modeling the mismatch between h(X)and F, we show that FME relaxes the hard linear constraint F = h (X) in manifold regularization (MR), making it better cope with the data sampled from a nonlinear manifold. In addition, we propose a simplified version (referred to as FME/U) for unsupervised dimension reduction. We also show that our proposed framework provides a unified view to explain and understand many semi-supervised, supervised and unsupervised dimension reduction techniques. Comprehensive experiments on several benchmark databases demonstrate the significant improvement over existing dimension reduction algorithms.
Original language | English |
---|---|
Article number | 5427147 |
Pages (from-to) | 1921-1932 |
Number of pages | 12 |
Journal | IEEE Transactions on Image Processing |
Volume | 19 |
Issue number | 7 |
DOIs | |
State | Published - Jul 2010 |
Externally published | Yes |
Keywords
- Dimension reduction
- Face recognition
- Manifold embedding
- Semi-supervised learning