TY - JOUR
T1 - First escape probability and mean first exit time for a time-delayed ecosystem driven by non-Gaussian colored noise
AU - Zhang, Hongxia
AU - Xu, Wei
AU - Guo, Qin
AU - Han, Ping
AU - Qiao, Yan
N1 - Publisher Copyright:
© 2020
PY - 2020/6
Y1 - 2020/6
N2 - The first escape probability (FEP) and the mean first exit time (MFET) are utilized to explore the stability of the high vegetation basin in an extended ecosystem with the two important features: the randomness and the delay. The more realistic non-Gaussian colored noise is chosen as a stochastic perturbation. In order to overcome the effects of the system inherent parameters, two novel basin stability indexes are proposed based on the FEP and the MFET. The unified colored noise approximation and the small delay approximation are exploited to further simplify the system and obtain the stability indexes. The results show that either increased herbivores or reduced rainfall can increase the FEP and decrease the MFET of the high vegetation ecosystem, and non-Gaussian colored noise disturbance also exacerbates the problem. Conversely, the time delay can control deterioration of the ecosystem. Furthermore, by comparing the theoretical analysis results and Monte Carlo simulation results of the original system, it is found that both the approximation methods and the process of solving the FEP and the MFET are feasible.
AB - The first escape probability (FEP) and the mean first exit time (MFET) are utilized to explore the stability of the high vegetation basin in an extended ecosystem with the two important features: the randomness and the delay. The more realistic non-Gaussian colored noise is chosen as a stochastic perturbation. In order to overcome the effects of the system inherent parameters, two novel basin stability indexes are proposed based on the FEP and the MFET. The unified colored noise approximation and the small delay approximation are exploited to further simplify the system and obtain the stability indexes. The results show that either increased herbivores or reduced rainfall can increase the FEP and decrease the MFET of the high vegetation ecosystem, and non-Gaussian colored noise disturbance also exacerbates the problem. Conversely, the time delay can control deterioration of the ecosystem. Furthermore, by comparing the theoretical analysis results and Monte Carlo simulation results of the original system, it is found that both the approximation methods and the process of solving the FEP and the MFET are feasible.
KW - First escape probability
KW - Mean first exit time
KW - Non-Gaussian colored noise
KW - Time delay
KW - Vegetation ecosystem
UR - http://www.scopus.com/inward/record.url?scp=85081734964&partnerID=8YFLogxK
U2 - 10.1016/j.chaos.2020.109767
DO - 10.1016/j.chaos.2020.109767
M3 - 文章
AN - SCOPUS:85081734964
SN - 0960-0779
VL - 135
JO - Chaos, Solitons and Fractals
JF - Chaos, Solitons and Fractals
M1 - 109767
ER -