TY - GEN
T1 - Fast nonnegative matrix tri-factorization for large-scale data co-clustering
AU - Wang, Hua
AU - Nie, Feiping
AU - Huang, Heng
AU - Makedon, Fillia
PY - 2011
Y1 - 2011
N2 - Nonnegative Matrix Factorization (NMF) based co-clustering methods have attracted increasing attention in recent years because of their mathematical elegance and encouraging empirical results. However, the algorithms to solve NMF problems usually involve intensive matrix multiplications, which make them computationally inefficient. In this paper, instead of constraining the factor matrices of NMF to be nonnegative as existing methods, we propose a novel Fast Nonnegative Matrix Trifactorization (FNMTF) approach to constrain them to be cluster indicator matrices, a special type of nonnegative matrices. As a result, the optimization problem of our approach can be decoupled, which results in much smaller size subproblems requiring much less matrix multiplications, such that our approach works well for large-scale input data. Moreover, the resulted factor matrices can directly assign cluster labels to data points and features due to the nature of indicator matrices. In addition, through exploiting the manifold structures in both data and feature spaces, we further introduce the Locality Preserved FNMTF (LP-FNMTF) approach, by which the clustering performance is improved. The promising results in extensive experimental evaluations validate the effectiveness of the proposed methods.
AB - Nonnegative Matrix Factorization (NMF) based co-clustering methods have attracted increasing attention in recent years because of their mathematical elegance and encouraging empirical results. However, the algorithms to solve NMF problems usually involve intensive matrix multiplications, which make them computationally inefficient. In this paper, instead of constraining the factor matrices of NMF to be nonnegative as existing methods, we propose a novel Fast Nonnegative Matrix Trifactorization (FNMTF) approach to constrain them to be cluster indicator matrices, a special type of nonnegative matrices. As a result, the optimization problem of our approach can be decoupled, which results in much smaller size subproblems requiring much less matrix multiplications, such that our approach works well for large-scale input data. Moreover, the resulted factor matrices can directly assign cluster labels to data points and features due to the nature of indicator matrices. In addition, through exploiting the manifold structures in both data and feature spaces, we further introduce the Locality Preserved FNMTF (LP-FNMTF) approach, by which the clustering performance is improved. The promising results in extensive experimental evaluations validate the effectiveness of the proposed methods.
UR - http://www.scopus.com/inward/record.url?scp=84880919155&partnerID=8YFLogxK
U2 - 10.5591/978-1-57735-516-8/IJCAI11-261
DO - 10.5591/978-1-57735-516-8/IJCAI11-261
M3 - 会议稿件
AN - SCOPUS:84880919155
SN - 9781577355120
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 1553
EP - 1558
BT - IJCAI 2011 - 22nd International Joint Conference on Artificial Intelligence
T2 - 22nd International Joint Conference on Artificial Intelligence, IJCAI 2011
Y2 - 16 July 2011 through 22 July 2011
ER -