TY - JOUR
T1 - Fast and Orthogonal Locality Preserving Projections for Dimensionality Reduction
AU - Wang, Rong
AU - Nie, Feiping
AU - Hong, Richang
AU - Chang, Xiaojun
AU - Yang, Xiaojun
AU - Yu, Weizhong
N1 - Publisher Copyright:
© 1992-2012 IEEE.
PY - 2017/10
Y1 - 2017/10
N2 - The locality preserving projections (LPP) algorithm is a recently developed linear dimensionality reduction algorithm that has been frequently used in face recognition and other applications. However, the projection matrix in LPP is not orthogonal, thus creating difficulties for both reconstruction and other applications. As the orthogonality property is desirable, orthogonal LPP (OLPP) has been proposed so that an orthogonal projection matrix can be obtained based on a step by step procedure; however, this makes the algorithm computationally more expensive. Therefore, in this paper, we propose a fast and orthogonal version of LPP, called FOLPP, which simultaneously minimizes the locality and maximizes the globality under the orthogonal constraint. As a result, the computation burden of the proposed algorithm can be effectively alleviated compared with the OLPP algorithm. Experimental results on two face recognition data sets and two hyperspectral data sets are presented to demonstrate the effectiveness of the proposed algorithm.
AB - The locality preserving projections (LPP) algorithm is a recently developed linear dimensionality reduction algorithm that has been frequently used in face recognition and other applications. However, the projection matrix in LPP is not orthogonal, thus creating difficulties for both reconstruction and other applications. As the orthogonality property is desirable, orthogonal LPP (OLPP) has been proposed so that an orthogonal projection matrix can be obtained based on a step by step procedure; however, this makes the algorithm computationally more expensive. Therefore, in this paper, we propose a fast and orthogonal version of LPP, called FOLPP, which simultaneously minimizes the locality and maximizes the globality under the orthogonal constraint. As a result, the computation burden of the proposed algorithm can be effectively alleviated compared with the OLPP algorithm. Experimental results on two face recognition data sets and two hyperspectral data sets are presented to demonstrate the effectiveness of the proposed algorithm.
KW - Dimensionality reduction (DR)
KW - face recognition
KW - hyperspectral image (HSI) classification
KW - locality preserving projections (LPP)
UR - http://www.scopus.com/inward/record.url?scp=85023597111&partnerID=8YFLogxK
U2 - 10.1109/TIP.2017.2726188
DO - 10.1109/TIP.2017.2726188
M3 - 文章
C2 - 28708560
AN - SCOPUS:85023597111
SN - 1057-7149
VL - 26
SP - 5019
EP - 5030
JO - IEEE Transactions on Image Processing
JF - IEEE Transactions on Image Processing
IS - 10
M1 - 7976386
ER -