TY - JOUR
T1 - Fabrication of hierarchical porous ZIF-8 for enhanced adsorption of uranium
AU - Zheng, Hong
AU - Jiang, Xue
AU - Wang, Yu
AU - Zhang, Geng
AU - Zhang, Baoliang
AU - Zhang, Qiuyu
N1 - Publisher Copyright:
© 2025
PY - 2025/7/5
Y1 - 2025/7/5
N2 - The adsorption and separation of uranium are critical for the treatment of nuclear wastewater. Zeolitic imidazolate framework-8 (ZIF-8) nanoparticles have been widely employed in wastewater treatment due to their large specific surface area, thermal stability, and chemical stability. However, the small pore size (<2 nm) of ZIF-8, which is predominantly microporous, increases reaction resistance and reduces the separation efficiency of metal ions in aqueous solutions. To address these limitations, this study proposes a hierarchical porous ZIF-8 (HpZIF-8) structure containing both micropores and mesopores. HpZIF-8 was synthesized using polydiallyldimethylammonium chloride (PDDA) as a template to guide the formation of the microporous ZIF-8 framework. Nitrogen adsorption-desorption isotherms confirmed that HpZIF-8 exhibits dual microporous and mesoporous characteristics. The equilibrium adsorption capacity of HpZIF-8 for uranium was 297.7 mg/g, significantly exceeding that of conventional ZIF-8 nanoparticles. Additionally, the adsorption rate of uranium by HpZIF-8 was 46.52 mg/g·min, 1.67 times higher than that of ZIF-8 (27.92 mg/g·min). HpZIF-8 demonstrates superior adsorption capacity, attributed to its unique hierarchical porous structure. This study highlights the potential of HpZIF-8 for rapid uranium capture in contaminated environments, providing a promising approach for the application of metal-organic frameworks in environmental remediation.
AB - The adsorption and separation of uranium are critical for the treatment of nuclear wastewater. Zeolitic imidazolate framework-8 (ZIF-8) nanoparticles have been widely employed in wastewater treatment due to their large specific surface area, thermal stability, and chemical stability. However, the small pore size (<2 nm) of ZIF-8, which is predominantly microporous, increases reaction resistance and reduces the separation efficiency of metal ions in aqueous solutions. To address these limitations, this study proposes a hierarchical porous ZIF-8 (HpZIF-8) structure containing both micropores and mesopores. HpZIF-8 was synthesized using polydiallyldimethylammonium chloride (PDDA) as a template to guide the formation of the microporous ZIF-8 framework. Nitrogen adsorption-desorption isotherms confirmed that HpZIF-8 exhibits dual microporous and mesoporous characteristics. The equilibrium adsorption capacity of HpZIF-8 for uranium was 297.7 mg/g, significantly exceeding that of conventional ZIF-8 nanoparticles. Additionally, the adsorption rate of uranium by HpZIF-8 was 46.52 mg/g·min, 1.67 times higher than that of ZIF-8 (27.92 mg/g·min). HpZIF-8 demonstrates superior adsorption capacity, attributed to its unique hierarchical porous structure. This study highlights the potential of HpZIF-8 for rapid uranium capture in contaminated environments, providing a promising approach for the application of metal-organic frameworks in environmental remediation.
KW - Adsorption
KW - Hierarchical porous
KW - Uranium
KW - ZIF-8
UR - http://www.scopus.com/inward/record.url?scp=105001228447&partnerID=8YFLogxK
U2 - 10.1016/j.colsurfa.2025.136715
DO - 10.1016/j.colsurfa.2025.136715
M3 - 文章
AN - SCOPUS:105001228447
SN - 0927-7757
VL - 716
JO - Colloids and Surfaces A: Physicochemical and Engineering Aspects
JF - Colloids and Surfaces A: Physicochemical and Engineering Aspects
M1 - 136715
ER -