TY - JOUR
T1 - Fabrication of Energetic Metal-Organic Frameworks
T2 - Potassium 5-Carboxylato-3,4-Dinitropyrazole and Potassium 5-(Hydrazinecarbonyl)-3,4-Dinitropyrazole
AU - Cao, Yuteng
AU - Wang, Kangcai
AU - Song, Siwei
AU - Liu, Yu
AU - Zhang, Wenquan
N1 - Publisher Copyright:
© 2023 American Chemical Society.
PY - 2023/10/23
Y1 - 2023/10/23
N2 - Energetic materials have been widely applied in civil and military fields, whose thermostability is a key indicator to evaluate their safety levels under severe conditions. Herein, two novel energetic metal-organic frameworks (EMOFs), namely, 4 and 6, were experimentally obtained and comprehensively characterized. The two EMOFs both possess unique three-dimensional (3D) coordination structures. With a high crystal density of 2.184 g·cm-3, EMOF 4 exhibits outstandingly superior thermostability (onset: 290 °C; peak: 303 °C), while EMOF 6 features onset and peak decomposition temperatures of 220 and 230 °C. The calculated energetic parameters of 4 and 6 are as follows: detonation velocity: 8731 m·s-1 and 8294 m·s-1; detonation pressure: 26.5 and 26.4 GPa. Compared to EMOF 6, EMOF 4 features high energy, excellent thermostability, and low mechanical sensitivities, which should be partly attributed to more plentiful coordination interactions. More coordination bonds are conducive to strengthening the EMOF framework, which needs much more energy to collapse, thereby maintaining higher thermal stability. The above favorable characteristics not only indicate EMOF 4 has a promising future in applications as a thermostable explosive but also provide an effective and feasible strategy for developing novel heat-resistant energetic materials via reinforced frame structures of EMOFs.
AB - Energetic materials have been widely applied in civil and military fields, whose thermostability is a key indicator to evaluate their safety levels under severe conditions. Herein, two novel energetic metal-organic frameworks (EMOFs), namely, 4 and 6, were experimentally obtained and comprehensively characterized. The two EMOFs both possess unique three-dimensional (3D) coordination structures. With a high crystal density of 2.184 g·cm-3, EMOF 4 exhibits outstandingly superior thermostability (onset: 290 °C; peak: 303 °C), while EMOF 6 features onset and peak decomposition temperatures of 220 and 230 °C. The calculated energetic parameters of 4 and 6 are as follows: detonation velocity: 8731 m·s-1 and 8294 m·s-1; detonation pressure: 26.5 and 26.4 GPa. Compared to EMOF 6, EMOF 4 features high energy, excellent thermostability, and low mechanical sensitivities, which should be partly attributed to more plentiful coordination interactions. More coordination bonds are conducive to strengthening the EMOF framework, which needs much more energy to collapse, thereby maintaining higher thermal stability. The above favorable characteristics not only indicate EMOF 4 has a promising future in applications as a thermostable explosive but also provide an effective and feasible strategy for developing novel heat-resistant energetic materials via reinforced frame structures of EMOFs.
UR - http://www.scopus.com/inward/record.url?scp=85175495794&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.3c02233
DO - 10.1021/acs.inorgchem.3c02233
M3 - 文章
C2 - 37823764
AN - SCOPUS:85175495794
SN - 0020-1669
VL - 62
SP - 17199
EP - 17206
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 42
ER -