F2TNet: FMRI to T1w MRI Knowledge Transfer Network for Brain Multi-phenotype Prediction

Zhibin He, Wuyang Li, Yu Jiang, Zhihao Peng, Pengyu Wang, Xiang Li, Tianming Liu, Junwei Han, Tuo Zhang, Yixuan Yuan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

Using brain imaging data to predict the non-neuroimaging phenotypes at the individual level is a fundamental goal of system neuroscience. Despite its significance, the high acquisition cost of functional Magnetic Resonance Imaging (fMRI) hampers its clinical translation in phenotype prediction, while the analysis based solely on cost-efficient T1-weighted (T1w) MRI yields inferior performance than fMRI. The reasons lie in that existing works ignore two significant challenges. 1) they neglect the knowledge transfer from fMRI to T1w MRI, failing to achieve effective prediction using cost-efficient T1w MRI. 2) They are limited to predicting a single phenotype and cannot capture the intrinsic dependence among various phenotypes, such as strength and endurance, preventing comprehensive and accurate clinical analysis. To tackle these issues, we propose an FMRI to T1w MRI knowledge transfer Network (F2TNet) to achieve cost-efficient and effective analysis on brain multi-phenotype, representing the first attempt in this field, which consists of a Phenotypes-guided Knowledge Transfer (PgKT) module and a modality-aware Multi-phenotype Prediction (MpP) module. Specifically, PgKT aligns brain nodes across modalities by solving a bipartite graph-matching problem, thereby achieving adaptive knowledge transfer from fMRI to T1w MRI through the guidance of multi-phenotype. Then, MpP enriches the phenotype codes with crossmodal complementary information and decomposes these codes to enable accurate multi-phenotype prediction. Experimental results demonstrate that the F2TNet significantly improves the prediction of brain multiphenotype and outperforms state-of-the-art methods. The code is available at https://github.com/CUHK-AIM-Group/F2TNet.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention - MICCAI 2024 - 27th International Conference, Proceedings
EditorsMarius George Linguraru, Aasa Feragen, Ben Glocker, Stamatia Giannarou, Julia A. Schnabel, Qi Dou, Karim Lekadir
PublisherSpringer Science and Business Media Deutschland GmbH
Pages265-275
Number of pages11
ISBN (Print)9783031721199
DOIs
StatePublished - 2024
Event27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024 - Marrakesh, Morocco
Duration: 6 Oct 202410 Oct 2024

Publication series

NameLecture Notes in Computer Science
Volume15011 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference27th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2024
Country/TerritoryMorocco
CityMarrakesh
Period6/10/2410/10/24

Keywords

  • Brain phenotype prediction
  • Knowledge transfer
  • Relationship between structure and function

Cite this