Exploring Gyro-Sulcal Functional Connectivity Differences Across Task Domains via Anatomy-Guided Spatio-Temporal Graph Convolutional Networks

Mingxin Jiang, Shimin Yang, Zhongbo Zhao, Jiadong Yan, Yuzhong Chen, Tuo Zhang, Shu Zhang, Benjamin Becker, Keith M. Kendrick, Xi Jiang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

One of the most prominent anatomical characteristics of the human brain lies in its highly folded cortical surface into convex gyri and concave sulci. Previous studies have demonstrated that gyri and sulci exhibit fundamental differences in terms of genetic influences, morphology and structural connectivity as well as function. Recent studies have demonstrated time-frequency differences in neural activity between gyri and sulci. However, the functional connectivity between gyri and sulci is currently unclear. Moreover, the regularity/variability of the gyro-sulcal functional connectivity across different task domains remains unknown. To address these two questions, we developed a novel anatomy-guided spatio-temporal graph convolutional network (AG-STGCN) to classify task-based fMRI (t-fMRI) and resting state fMRI (rs-fMRI) data, and to further investigate gyro-sulcal functional connectivity differences across different task domains. By performing seven independent classifications based on seven t-fMRI and one rs-fMRI datasets of 800 subjects from the Human Connectome Project, we found that the constructed gyro-sulcal functional connectivity features could satisfactorily differentiate the t-fMRI and rs-fMRI data. For those functional connectivity features contributing to the classifications, gyri played a more crucial role than sulci in both ipsilateral and contralateral neural communications across task domains. Our study provides novel insights into unveiling the functional differentiation between gyri and sulci as well as for understanding anatomo-functional relationships in the brain.

Original languageEnglish
Title of host publicationMachine Learning in Medical Imaging - 12th International Workshop, MLMI 2021, Held in Conjunction with MICCAI 2021, Proceedings
EditorsChunfeng Lian, Xiaohuan Cao, Islem Rekik, Xuanang Xu, Pingkun Yan
PublisherSpringer Science and Business Media Deutschland GmbH
Pages130-139
Number of pages10
ISBN (Print)9783030875886
DOIs
StatePublished - 2021
Event12th International Workshop on Machine Learning in Medical Imaging, MLMI 2021, held in conjunction with 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021 - Virtual, Online
Duration: 27 Sep 202127 Sep 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12966 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference12th International Workshop on Machine Learning in Medical Imaging, MLMI 2021, held in conjunction with 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
CityVirtual, Online
Period27/09/2127/09/21

Keywords

  • Cortical folding
  • Functional connectivity
  • Functional MRI
  • Graph convolutional network

Fingerprint

Dive into the research topics of 'Exploring Gyro-Sulcal Functional Connectivity Differences Across Task Domains via Anatomy-Guided Spatio-Temporal Graph Convolutional Networks'. Together they form a unique fingerprint.

Cite this