Exploring functional brain dynamics via a Bayesian connectivity change point model

Zhichao Lian, Xiang Li, Jianchuan Xing, Jinglei Lv, Xi Jiang, Dajiang Zhu, Shu Zhang, Jiansong Xu, Marc N. Potenza, Tianming Liu, Jing Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Scopus citations

Abstract

Multiple recent neuroimaging studies have demonstrated that the human brain's function undergoes remarkable temporal dynamics. However, quantitative characterization and modeling of such functional dynamics have been rarely explored. To fill this gap, we presents a novel Bayesian connectivity change point model (BCCPM), to analyze the joint probabilities among the nodes of brain networks between different time periods and statistically determine the boundaries of temporal blocks to estimate the change points. Intuitively, the determined change points represent the transitions of functional interaction patterns within the brain networks and can be used to investigate temporal functional brain dynamics. The BCCPM has been evaluated and validated by synthesized data. Also, the BCCPM has been applied to a real block-design task-based fMRI dataset and interesting results were obtained.

Original languageEnglish
Title of host publication2014 IEEE 11th International Symposium on Biomedical Imaging, ISBI 2014
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages600-603
Number of pages4
ISBN (Electronic)9781467319591
DOIs
StatePublished - 29 Jul 2014
Externally publishedYes
Event2014 IEEE 11th International Symposium on Biomedical Imaging, ISBI 2014 - Beijing, China
Duration: 29 Apr 20142 May 2014

Publication series

Name2014 IEEE 11th International Symposium on Biomedical Imaging, ISBI 2014

Conference

Conference2014 IEEE 11th International Symposium on Biomedical Imaging, ISBI 2014
Country/TerritoryChina
CityBeijing
Period29/04/142/05/14

Keywords

  • Change point detection
  • FMRI
  • Graph model

Fingerprint

Dive into the research topics of 'Exploring functional brain dynamics via a Bayesian connectivity change point model'. Together they form a unique fingerprint.

Cite this