Exploiting the entire feature space with sparsity for automatic image annotation

Zhigang Ma, Yi Yang, Feiping Nie, Jasper Uijlings, Nicu Sebe

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

65 Scopus citations

Abstract

The explosive growth of digital images requires effective methods to manage these images. Among various existing methods, automatic image annotation has proved to be an important technique for image management tasks, e.g., image retrieval over large-scale image databases. Automatic image annotation has been widely studied during recent years and a considerable number of approaches have been proposed. However, the performance of these methods is yet to be satisfactory, thus demanding more effort on research of image annotation. In this paper, we propose a novel semi-supervised framework built upon feature selection for automatic image annotation. Our method aims to jointly select the most relevant features from all the data points by using a sparsity-based model and exploiting both labeled and unlabeled data to learn the manifold structure. Our framework is able to simultaneously learn a robust classifier for image annotation by selecting the discriminating features related to the semantic concepts. To solve the objective function of our framework, we propose an efficient iterative algorithm. Extensive experiments are performed on different realworld image datasets with the results demonstrating the promising performance of our framework for automatic image annotation.

Original languageEnglish
Title of host publicationMM'11 - Proceedings of the 2011 ACM Multimedia Conference and Co-Located Workshops
Pages283-292
Number of pages10
DOIs
StatePublished - 2011
Externally publishedYes
Event19th ACM International Conference on Multimedia ACM Multimedia 2011, MM'11 - Scottsdale, AZ, United States
Duration: 28 Nov 20111 Dec 2011

Publication series

NameMM'11 - Proceedings of the 2011 ACM Multimedia Conference and Co-Located Workshops

Conference

Conference19th ACM International Conference on Multimedia ACM Multimedia 2011, MM'11
Country/TerritoryUnited States
CityScottsdale, AZ
Period28/11/111/12/11

Keywords

  • Image annotation
  • Manifold learning
  • Semi-supervised learning
  • Sparse feature selection

Fingerprint

Dive into the research topics of 'Exploiting the entire feature space with sparsity for automatic image annotation'. Together they form a unique fingerprint.

Cite this