Enhancing Flapping Wing Propulsion in Forward Flight Through Dynamic Twisting: A Numerical Investigation

Yuanbo Dong, Bifeng Song, Wenqing Yang, Dong Xue

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

To better understand the function of natural vertebrates such as hummingbirds to twist their wings, we presented a numerical investigation on the role of dynamic twisting based on a hummingbird-like flapping wing model. Computational fluid dynamic (CFD) simulations were performed to examine the effects of dynamic torsion on the unsteady flow field, generation of instantaneous aerodynamic forces, and time-averaged aerodynamic performance. This research uncovers the details of wake structures in the flow and explores the underlying mechanisms behind the positive effects of wing torsion. The results demonstrate that wing torsion can effectively maintain the favorable effective angle of attack distribution of the wing cross-section along the spanwise direction, resulting in a higher time-averaged thrust and vertical force. Further, the proper design of dynamic torsion parameters can also improve the propulsive efficiency of the flapping wing in forward flight. Dynamic torsion also showed superior ability in controlling the airflow separation over the airfoil surface and maintaining the stability of the leading-edge vortex (LEV). Under the currently specified time-varying profile of effective angle of attack variations, maintaining a constant effective angle of 9° during the downstroke and − 9° upstroke achieved the optimal propulsion performance. The findings in this paper have promising implications for both bio-inspired and robotic flapping wing applications.

Original languageEnglish
Title of host publication2023 Asia-Pacific International Symposium on Aerospace Technology, APISAT 2023, Proceedings - Volume I
EditorsSong Fu
PublisherSpringer Science and Business Media Deutschland GmbH
Pages422-439
Number of pages18
ISBN (Print)9789819739974
DOIs
StatePublished - 2024
EventAsia-Pacific International Symposium on Aerospace Technology, APISAT 2023 - Lingshui, China
Duration: 16 Oct 202318 Oct 2023

Publication series

NameLecture Notes in Electrical Engineering
Volume1050 LNEE
ISSN (Print)1876-1100
ISSN (Electronic)1876-1119

Conference

ConferenceAsia-Pacific International Symposium on Aerospace Technology, APISAT 2023
Country/TerritoryChina
CityLingshui
Period16/10/2318/10/23

Keywords

  • Flapping wing propulsion
  • Rapid forward flight
  • Wing torsion

Fingerprint

Dive into the research topics of 'Enhancing Flapping Wing Propulsion in Forward Flight Through Dynamic Twisting: A Numerical Investigation'. Together they form a unique fingerprint.

Cite this