TY - JOUR
T1 - Enhancement of mechanical properties in Ti2AlNb/Ti60 brazed joints via Nb foam-induced in-situ formation of tough Ti4Nb phase
AU - Wang, Peng
AU - Shao, Heng
AU - Chen, Haiyan
AU - Zhang, Hongbo
AU - Nai, Xin
AU - Zhao, Shuai
AU - Wang, Pengcheng
AU - Song, Xiaoguo
AU - Vairis, Achilles
AU - Li, Wenya
N1 - Publisher Copyright:
© 2024
PY - 2024/12
Y1 - 2024/12
N2 - Brazing titanium alloys with TiZrCuNi filler typically leads to numerous eutectic structures and brittle intermetallic compounds, compromising the mechanical properties of joints, particularly their toughness. To mitigate this issue, this study employs Ni and Nb foams as interlayers to join Ti2AlNb and Ti60 alloy. The results show that using Ni foam as the interlayer only forms 17.8 % β-Ti phase in the brazing seam. In contrast, Nb foam as the interlayer promotes the in-situ formation of 38.5 % Ti4Nb phase within the brazing seam, effectively balancing the coefficient of thermal expansion difference and reducing residual thermal stresses. Comparative analysis reveals that the Ti4Nb phase has superior plasticity and toughness compared to the β-Ti phase, allowing for substantial strain energy storage. The interface between β-Ti phase and Zr2Cu phase exhibits significant lattice mismatch, resulting in an incoherent interface. Conversely, the Nb foam interlayer produces a semi-coherent interface between Ti4Nb and Zr2Cu phases, characterized by reduced lattice mismatch, which enhances the interfacial bonding strength of the brazed joint. The Ti2AlNb/Ti60 joints, when brazed with Nb foam under consistent conditions, achieved a shear strength of 414.6 MPa, which is approximately 18 % superior to that of joints brazed using the Ti-36.5Zr-10Ni-15Cu-0.5Co-0.5Nb amorphous filler solely. Additionally, the shear stress-strain curves of the joints with Nb foam exhibit a more pronounced yield stage compared to those with only filler. This study introduces a novel approach for improving the toughness of brazed joints in practical applications using titanium-based fillers.
AB - Brazing titanium alloys with TiZrCuNi filler typically leads to numerous eutectic structures and brittle intermetallic compounds, compromising the mechanical properties of joints, particularly their toughness. To mitigate this issue, this study employs Ni and Nb foams as interlayers to join Ti2AlNb and Ti60 alloy. The results show that using Ni foam as the interlayer only forms 17.8 % β-Ti phase in the brazing seam. In contrast, Nb foam as the interlayer promotes the in-situ formation of 38.5 % Ti4Nb phase within the brazing seam, effectively balancing the coefficient of thermal expansion difference and reducing residual thermal stresses. Comparative analysis reveals that the Ti4Nb phase has superior plasticity and toughness compared to the β-Ti phase, allowing for substantial strain energy storage. The interface between β-Ti phase and Zr2Cu phase exhibits significant lattice mismatch, resulting in an incoherent interface. Conversely, the Nb foam interlayer produces a semi-coherent interface between Ti4Nb and Zr2Cu phases, characterized by reduced lattice mismatch, which enhances the interfacial bonding strength of the brazed joint. The Ti2AlNb/Ti60 joints, when brazed with Nb foam under consistent conditions, achieved a shear strength of 414.6 MPa, which is approximately 18 % superior to that of joints brazed using the Ti-36.5Zr-10Ni-15Cu-0.5Co-0.5Nb amorphous filler solely. Additionally, the shear stress-strain curves of the joints with Nb foam exhibit a more pronounced yield stage compared to those with only filler. This study introduces a novel approach for improving the toughness of brazed joints in practical applications using titanium-based fillers.
KW - Brazing
KW - Interfacial microstructure
KW - Mechanical properties
KW - Nb foam
KW - TiNb phase
UR - http://www.scopus.com/inward/record.url?scp=85208131123&partnerID=8YFLogxK
U2 - 10.1016/j.matchar.2024.114513
DO - 10.1016/j.matchar.2024.114513
M3 - 文章
AN - SCOPUS:85208131123
SN - 1044-5803
VL - 218
JO - Materials Characterization
JF - Materials Characterization
M1 - 114513
ER -