TY - JOUR
T1 - Enhanced thermal conductivities of epoxy nanocomposites via incorporating in-situ fabricated hetero-structured SiC-BNNS fillers
AU - Han, Yixin
AU - Shi, Xuetao
AU - Yang, Xutong
AU - Guo, Yongqiang
AU - Zhang, Junliang
AU - Kong, Jie
AU - Gu, Junwei
N1 - Publisher Copyright:
© 2019 Elsevier Ltd
PY - 2020/2/8
Y1 - 2020/2/8
N2 - Novel hetero-structured silicon carbide-boron nitride nanosheets (SiC-BNNS) by sol-gel and in-situ growth method were performed as thermally conductive & insulating fillers, and the SiC-BNNS/epoxy thermally conductive nanocomposites were then prepared by blending-casting approach. Synthesized hetero-structured SiC-BNNS fillers have synergistic improvement effects on the thermal conductivities of the SiC-BNNS/epoxy nanocomposites. When the amount of hetero-structured SiC-BNNS fillers is 20 wt% (SiC-BNNS, 1/1, w/w), the thermal conductivity coefficient (λ) value of the SiC-BNNS/epoxy nanocomposites (0.89 W/mK) is 4.1 times that of pure epoxy resin (0.22 W/mK), and 2.1, 1.4, and 1.7 times of SiC/epoxy (0.43 W/mK), BNNS/epoxy (0.62 W/mK), and (SiC/BNNS)/epoxy thermally conductive nanocomposites (0.52 W/mK) with the same amount of fillers (20 wt% single BNNS, SiC, or SiC/BNNS hybrid fillers), respectively. Meantime, the obtained (SiC-BNNS)/epoxy thermally conductive nanocomposites also demonstrate favorable electrical insulating properties, and the breakdown strength, volume resistivity as well as surface resistivity is 22.1 kV/mm, 2.32 × 1015 Ω cm, and 1.26 × 1015 Ω cm, respectively.
AB - Novel hetero-structured silicon carbide-boron nitride nanosheets (SiC-BNNS) by sol-gel and in-situ growth method were performed as thermally conductive & insulating fillers, and the SiC-BNNS/epoxy thermally conductive nanocomposites were then prepared by blending-casting approach. Synthesized hetero-structured SiC-BNNS fillers have synergistic improvement effects on the thermal conductivities of the SiC-BNNS/epoxy nanocomposites. When the amount of hetero-structured SiC-BNNS fillers is 20 wt% (SiC-BNNS, 1/1, w/w), the thermal conductivity coefficient (λ) value of the SiC-BNNS/epoxy nanocomposites (0.89 W/mK) is 4.1 times that of pure epoxy resin (0.22 W/mK), and 2.1, 1.4, and 1.7 times of SiC/epoxy (0.43 W/mK), BNNS/epoxy (0.62 W/mK), and (SiC/BNNS)/epoxy thermally conductive nanocomposites (0.52 W/mK) with the same amount of fillers (20 wt% single BNNS, SiC, or SiC/BNNS hybrid fillers), respectively. Meantime, the obtained (SiC-BNNS)/epoxy thermally conductive nanocomposites also demonstrate favorable electrical insulating properties, and the breakdown strength, volume resistivity as well as surface resistivity is 22.1 kV/mm, 2.32 × 1015 Ω cm, and 1.26 × 1015 Ω cm, respectively.
KW - Casting
KW - Electrical properties
KW - Polymer-matrix composites (PMCs)
KW - Scanning electron microscopy (SEM)
UR - http://www.scopus.com/inward/record.url?scp=85076850522&partnerID=8YFLogxK
U2 - 10.1016/j.compscitech.2019.107944
DO - 10.1016/j.compscitech.2019.107944
M3 - 文章
AN - SCOPUS:85076850522
SN - 0266-3538
VL - 187
JO - Composites Science and Technology
JF - Composites Science and Technology
M1 - 107944
ER -