Enhanced Self-node Weights Based Graph Convolutional Networks for Passenger Flow Prediction

Hao Liu, Fan Zhang, Yi Fan, Junyou Zhu, Zhen Wang, Chao Gao

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Accurate and real-time passenger flow prediction is of great significance for realizing intelligent transportation systems. However, due to the complexity and unstable change of traffic network passenger flow data, passenger flow prediction remains a challenging problem in transportation research field. Moreover, the core problem is how to obtain the spatial and temporal characteristics efficiently. In this paper, we propose an Enhanced Self-node Weights Based Spatial-Temporal Graph Convolutional Networks (EST-GCN) model to capture the spatial and temporal characteristics. Specifically, in order to capture the spatial characteristics, we optimize the ability of Graph Convolutional of Network (GCN) in extracting the spatial characteristics of rail transit networks based on the difference maximization of aggregated information, hoping to solve the problem that GCN cannot fit peak value accurately. As for temporal characteristics, we leverage the Gate Recurrent Unit (GRU) model to obtain dynamic changes of passenger flow data to capture them. The EST-GCN model is a combination of these two models. Based on the Shanghai dataset, we use the proposed EST-GCN model for simulation experiments, and compare our proposed method with other mainstream passenger flow prediction algorithms. The experimental results demonstrate the superiority of our algorithm.

Original languageEnglish
Title of host publicationKnowledge Science, Engineering and Management - 14th International Conference, KSEM 2021, Proceedings
EditorsHan Qiu, Cheng Zhang, Zongming Fei, Meikang Qiu, Sun-Yuan Kung
PublisherSpringer Science and Business Media Deutschland GmbH
Pages262-274
Number of pages13
ISBN (Print)9783030821524
DOIs
StatePublished - 2021
Event14th International Conference on Knowledge Science, Engineering and Management, KSEM 2021 - Tokyo, Japan
Duration: 14 Aug 202116 Aug 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12817 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference14th International Conference on Knowledge Science, Engineering and Management, KSEM 2021
Country/TerritoryJapan
CityTokyo
Period14/08/2116/08/21

Keywords

  • Enhanced self-node weights based graph convolutional networks
  • Passenger flow prediction
  • Spatial and temporal characteristics

Fingerprint

Dive into the research topics of 'Enhanced Self-node Weights Based Graph Convolutional Networks for Passenger Flow Prediction'. Together they form a unique fingerprint.

Cite this