Enhanced energy storage properties and large electrostrictive effect of Bi0.35Na0.35Ba0.09Sr0.21Ti(1-x)(Al0.5Nb0.5)xO3 relaxor ceramics

Fan Yang, Qiang Li, Ao Zhang, Yuxin Jia, Weijia Wang, Huiqing Fan

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Ferroelectric ceramics have good piezoelectric and ferroelectric properties and can be used for energy storage equipment and actuators. Nevertheless, current research on dielectric capacitors has only focused on the energy storage density, but ignored efficiency. Moreover, conventional piezoelectric materials have a large strain hysteresis. In this work, (Al0.5Nb0.5)4+ (AN) complex ions doped 0.7Bi0.5Na0.5TiO3-0.3Ba0.3Sr0.7TiO3 (BNBST) ceramics were prepared. Doping AN destroyed the long-range ordered ferroelectric domains and generated polar nano regions, resulting in a gradual thinning and inclination of polarization hysteresis loops and an increase in relaxor degree. For BNBST-3AN ceramics, a Wrec of 1.52 J/cm3 and a η of 92.1% were achieved at 150 kV/cm. Meanwhile, BNBST-3AN ceramics had good energy storage temperature stability and cycling performance. The AN doping reduced the strain hysteresis in BNBST ceramics. BNBST-2AN ceramics exhibited a longitudinal electrostrictive coefficient Q33 ∼ 0.0292 m4/C2 and a field-induced strain of 0.25% with low strain hysteresis (6.67%). Furthermore, BNBST-4AN ceramics had superior dielectric temperature stability from 24 to 270 °C. All results show that BNBST-100xAN ceramics have great promise for energy storage devices and actuators.

Original languageEnglish
Pages (from-to)6068-6076
Number of pages9
JournalCeramics International
Volume49
Issue number4
DOIs
StatePublished - 15 Feb 2023

Keywords

  • (BiNa)TiO-based relaxor ceramics
  • Dielectric temperature stability
  • Electrostrictive effect
  • Energy storage properties
  • High efficiency

Fingerprint

Dive into the research topics of 'Enhanced energy storage properties and large electrostrictive effect of Bi0.35Na0.35Ba0.09Sr0.21Ti(1-x)(Al0.5Nb0.5)xO3 relaxor ceramics'. Together they form a unique fingerprint.

Cite this