TY - JOUR
T1 - Enhanced electro-responsive electrorheological efficiency of polyethylene oxide-intercalated montmorillonite nanocomposite suspension
AU - Liu, Yuchi
AU - Zhao, Xiaopeng
AU - Yin, Jianbo
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2023/6/5
Y1 - 2023/6/5
N2 - Polyethylene oxide (PEO)-salt complex is an important polymer electrolyte-based anhydrous electrorheological (ER) material. However, it is difficult to get PEO-based ER material in particle form owing to the low glass transition temperature. Cross-linking and copolymerization with other polymers are widely used ways to form polyether-salt complex with desired dimensions and stability. However, these ways are relatively complex, and the ionic conductivity of resulting products is also too high for ER application. In this paper, we report a simple way to form PEO-based nanocomposite ER particles by intercalation chemistry with montmorillonite (PEO-MMT) under the help of ethanol solvent. The structure and composition of samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetry, and so on. An increase in basal d001-spacings demonstrates successful intercalation of PEO in MMT. The electro-responsive ER effect of PEO-MMT suspension under electric fields was studied. It demonstrated that PEO intercalation not only effectively solved the problem of difficult granulation of PEO ER material but also replaced the absorbed water in the interlayer of MMT and greatly limited the ionic conductivity of MMT. Under electric fields, the suspension of PEO-MMT nanocomposite was found to show significant ER effect, weak current density, and wide working temperature range. A significant interfacial polarization process was observed by dielectric spectra measurement, which can explain the significant ER effect of PEO-MMT nanocomposite.
AB - Polyethylene oxide (PEO)-salt complex is an important polymer electrolyte-based anhydrous electrorheological (ER) material. However, it is difficult to get PEO-based ER material in particle form owing to the low glass transition temperature. Cross-linking and copolymerization with other polymers are widely used ways to form polyether-salt complex with desired dimensions and stability. However, these ways are relatively complex, and the ionic conductivity of resulting products is also too high for ER application. In this paper, we report a simple way to form PEO-based nanocomposite ER particles by intercalation chemistry with montmorillonite (PEO-MMT) under the help of ethanol solvent. The structure and composition of samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetry, and so on. An increase in basal d001-spacings demonstrates successful intercalation of PEO in MMT. The electro-responsive ER effect of PEO-MMT suspension under electric fields was studied. It demonstrated that PEO intercalation not only effectively solved the problem of difficult granulation of PEO ER material but also replaced the absorbed water in the interlayer of MMT and greatly limited the ionic conductivity of MMT. Under electric fields, the suspension of PEO-MMT nanocomposite was found to show significant ER effect, weak current density, and wide working temperature range. A significant interfacial polarization process was observed by dielectric spectra measurement, which can explain the significant ER effect of PEO-MMT nanocomposite.
KW - Dielectric spectra
KW - Electrorheology
KW - Montmorillonite
KW - Nanocomposite
KW - Polyethylene oxide
UR - http://www.scopus.com/inward/record.url?scp=85150271391&partnerID=8YFLogxK
U2 - 10.1016/j.colsurfa.2023.131239
DO - 10.1016/j.colsurfa.2023.131239
M3 - 文章
AN - SCOPUS:85150271391
SN - 0927-7757
VL - 666
JO - Colloids and Surfaces A: Physicochemical and Engineering Aspects
JF - Colloids and Surfaces A: Physicochemical and Engineering Aspects
M1 - 131239
ER -