TY - JOUR
T1 - Engineering highly reactive nanoarray based on tetrazole-triazole coordination polymer and ammonium perchlorate for advanced energetic microchips
AU - Meng, Ke Juan
AU - Li, Yuxiang
AU - Hussain, Iftikhar
AU - Tian, Momang
AU - Yan, Qi Long
AU - Zhang, Kaili
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/11/1
Y1 - 2024/11/1
N2 - The energetic microchips can be obtained through the integration of energetic materials into microelectromechanical systems (MEMS). Herein, a novel MEMS-compatible energetic composite Cutztr@AP has been prepared by using an in-situ approach. The recrystallized ammonium perchlorate (AP) is uniformly confined within the voids among the Cutztr24 nanorod arrays, resulting in a close contact between Cutztr24 and AP. This structure may effectively improve the mass transfer between the oxidizer and the fuels, thereby enhancing the reactivity. Morphological analysis reveals a uniform distribution of AP within the Cutztr@AP12.5 structure. Consequently, the heat release obtained from non-isothermal decomposition of Cutztr@AP12.5 is 1628 J/g, surpassing the independent heat release from Cutztr24 and AP combined. Benefiting from the enhanced reactivity of Cutztr@AP12.5, a significantly shorter flame duration (190 ms) was obtained with a larger luminous radiation area exceeding 2.5 cm2 comparison to Cutztr24, which has a flame duration of 673 ms with a luminous radiation area of around 1.0 cm2. More importantly, integrating Cutztr@AP12.5 into the energetic microchip reduces the ignition energy to approximately 19.0 mJ, as compared to 25.9 mJ for pure Cutztr24. This study offers a unique method for constructing high-performance energetic microchips.
AB - The energetic microchips can be obtained through the integration of energetic materials into microelectromechanical systems (MEMS). Herein, a novel MEMS-compatible energetic composite Cutztr@AP has been prepared by using an in-situ approach. The recrystallized ammonium perchlorate (AP) is uniformly confined within the voids among the Cutztr24 nanorod arrays, resulting in a close contact between Cutztr24 and AP. This structure may effectively improve the mass transfer between the oxidizer and the fuels, thereby enhancing the reactivity. Morphological analysis reveals a uniform distribution of AP within the Cutztr@AP12.5 structure. Consequently, the heat release obtained from non-isothermal decomposition of Cutztr@AP12.5 is 1628 J/g, surpassing the independent heat release from Cutztr24 and AP combined. Benefiting from the enhanced reactivity of Cutztr@AP12.5, a significantly shorter flame duration (190 ms) was obtained with a larger luminous radiation area exceeding 2.5 cm2 comparison to Cutztr24, which has a flame duration of 673 ms with a luminous radiation area of around 1.0 cm2. More importantly, integrating Cutztr@AP12.5 into the energetic microchip reduces the ignition energy to approximately 19.0 mJ, as compared to 25.9 mJ for pure Cutztr24. This study offers a unique method for constructing high-performance energetic microchips.
KW - Capacitance ignition
KW - Combustion performance
KW - Energetic coordination polymers
KW - Energetic microchips
KW - High reactivity
UR - http://www.scopus.com/inward/record.url?scp=85204926943&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2024.155868
DO - 10.1016/j.cej.2024.155868
M3 - 文章
AN - SCOPUS:85204926943
SN - 1385-8947
VL - 499
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 155868
ER -