TY - JOUR
T1 - Encasing Si particles within a versatile TiO2−xFx layer as an extremely reversible anode for high energy-density lithium-ion battery
AU - Ma, Yue
AU - Desta Asfaw, Habtom
AU - Liu, Chenjuan
AU - Wei, Bingqing
AU - Edström, Kristina
N1 - Publisher Copyright:
© 2016 The Authors
PY - 2016/12/1
Y1 - 2016/12/1
N2 - The chemical phenomena occurring at the electrode-electrolyte interfaces profoundly determine the cycle behavior of a lithium ion battery. In this work, we report that silicon-based anodes can attain enhanced levels of capacity retention, rate performance and lifespan when a versatile protective layer of, F-doped anatase (TiO2−xFx), is applied towards taming the interfacial chemistry of the silicon particles. With careful choice of titanium fluoride as a precursor, internal voids can be generated upon in-situ fluoride etching of the native oxide layer and are used to alleviate the mechanical stress caused by volume expansion of silicon during cycling. In the course of F-doping, part of the Ti4+(d0) ions in anatase are reduced to Ti3+(d1), thereby increasing charge carriers in the crystal structure. Hence, the multifunctional F-doped TiO2−x coating, not only minimizes the direct exposure of the Si surface to the electrolyte, but also improves the electronic conductivity via inter-valence electron hopping. The best-performing composite electrode, Si@TiO2−xFx-3, delivered a satisfactory performance in both half-cell and full-cell configurations. Furthermore, we present a study of 1) the Si valence change at the buried interface using synchrotron based hard X-ray photoelectron spectroscopy, and 2) the phase transformation of the electrode monitored in operando using X-ray diffraction. Based on these characterizations, we observe that the Li+ conducting intermediate phase (LixTiO2−xFx) formed inside the surface coating enables deep lithiation and delithiation of the silicon during battery operation, and thus increase the capacity that can be accessed from the electrodes.
AB - The chemical phenomena occurring at the electrode-electrolyte interfaces profoundly determine the cycle behavior of a lithium ion battery. In this work, we report that silicon-based anodes can attain enhanced levels of capacity retention, rate performance and lifespan when a versatile protective layer of, F-doped anatase (TiO2−xFx), is applied towards taming the interfacial chemistry of the silicon particles. With careful choice of titanium fluoride as a precursor, internal voids can be generated upon in-situ fluoride etching of the native oxide layer and are used to alleviate the mechanical stress caused by volume expansion of silicon during cycling. In the course of F-doping, part of the Ti4+(d0) ions in anatase are reduced to Ti3+(d1), thereby increasing charge carriers in the crystal structure. Hence, the multifunctional F-doped TiO2−x coating, not only minimizes the direct exposure of the Si surface to the electrolyte, but also improves the electronic conductivity via inter-valence electron hopping. The best-performing composite electrode, Si@TiO2−xFx-3, delivered a satisfactory performance in both half-cell and full-cell configurations. Furthermore, we present a study of 1) the Si valence change at the buried interface using synchrotron based hard X-ray photoelectron spectroscopy, and 2) the phase transformation of the electrode monitored in operando using X-ray diffraction. Based on these characterizations, we observe that the Li+ conducting intermediate phase (LixTiO2−xFx) formed inside the surface coating enables deep lithiation and delithiation of the silicon during battery operation, and thus increase the capacity that can be accessed from the electrodes.
KW - High energy-density
KW - Kinetic activation
KW - Operando X-ray Diffraction
KW - Si anode
KW - Versatile interfacial layer
UR - http://www.scopus.com/inward/record.url?scp=85003758636&partnerID=8YFLogxK
U2 - 10.1016/j.nanoen.2016.09.026
DO - 10.1016/j.nanoen.2016.09.026
M3 - 文章
AN - SCOPUS:85003758636
SN - 2211-2855
VL - 30
SP - 745
EP - 755
JO - Nano Energy
JF - Nano Energy
ER -