Embedding structured contour and location prior in siamesed fully convolutional networks for road detection

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

43 Scopus citations

Abstract

Road detection from the perspective of moving vehicles is a challenging issue in autonomous driving. Recently, many deep learning methods spring up for this task because they can extract high-level local features to find road regions from raw RGB data, such as Convolutional Neural Networks (CNN) and Fully Convolutional Networks (FCN). However, how to detect the boundary of road accurately is still an intractable problem. In this paper, we propose a siamesed fully convolutional network (named as 's-FCN-loc') based on VGG-net architecture, which is able to consider RGB-channel, semantic contour and location prior simultaneously to segment road region elaborately. To be specific, the s-FCN-loc has two streams to process original RGB images and contour maps respectively. At the same time, the location prior is directly appended to the last feature map to promote the final detection performance. Experiments demonstrate that the proposed s-FCN-loc can learn more discriminative features of road boundaries and converge 30% faster than the original FCN during the training stage. Finally, the proposed approach is evaluated on KITTI road detection benchmark, and achieves a competitive result.

Original languageEnglish
Title of host publicationICRA 2017 - IEEE International Conference on Robotics and Automation
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages219-224
Number of pages6
ISBN (Electronic)9781509046331
DOIs
StatePublished - 21 Jul 2017
Event2017 IEEE International Conference on Robotics and Automation, ICRA 2017 - Singapore, Singapore
Duration: 29 May 20173 Jun 2017

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2017 IEEE International Conference on Robotics and Automation, ICRA 2017
Country/TerritorySingapore
CitySingapore
Period29/05/173/06/17

Fingerprint

Dive into the research topics of 'Embedding structured contour and location prior in siamesed fully convolutional networks for road detection'. Together they form a unique fingerprint.

Cite this