EM-Trans: Edge-Aware Multimodal Transformer for RGB-D Salient Object Detection

Geng Chen, Qingyue Wang, Bo Dong, Ruitao Ma, Nian Liu, Huazhu Fu, Yong Xia

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

RGB-D salient object detection (SOD) has gained tremendous attention in recent years. In particular, transformer has been employed and shown great potential. However, existing transformer models usually overlook the vital edge information, which is a major issue restricting the further improvement of SOD accuracy. To this end, we propose a novel edge-aware RGB-D SOD transformer, called EM-Trans, which explicitly models the edge information in a dual-band decomposition framework. Specifically, we employ two parallel decoder networks to learn the high-frequency edge and low-frequency body features from the low- and high-level features extracted from a two-steam multimodal backbone network, respectively. Next, we propose a cross-attention complementarity exploration module to enrich the edge/body features by exploiting the multimodal complementarity information. The refined features are then fed into our proposed color-hint guided fusion module for enhancing the depth feature and fusing the multimodal features. Finally, the resulting features are fused using our deeply supervised progressive fusion module, which progressively integrates edge and body features for predicting saliency maps. Our model explicitly considers the edge information for accurate RGB-D SOD, overcoming the limitations of existing methods and effectively improving the performance. Extensive experiments on benchmark datasets demonstrate that EM-Trans is an effective RGB-D SOD framework that outperforms the current state-of-the-art models, both quantitatively and qualitatively. A further extension to RGB-T SOD demonstrates the promising potential of our model in various kinds of multimodal SOD tasks.

Original languageEnglish
Pages (from-to)3175-3188
Number of pages14
JournalIEEE Transactions on Neural Networks and Learning Systems
Volume36
Issue number2
DOIs
StatePublished - 2025

Keywords

  • Edge-aware model
  • multimodal learning
  • salient object detection (SOD)
  • transformer

Fingerprint

Dive into the research topics of 'EM-Trans: Edge-Aware Multimodal Transformer for RGB-D Salient Object Detection'. Together they form a unique fingerprint.

Cite this