TY - JOUR
T1 - Electrical and optical properties of indium and lead co-doped cd0.9zn0.1te
AU - Zaman, Yasir
AU - Tirth, Vineet
AU - Rahman, Nasir
AU - Ali, Amjad
AU - Khan, Rajwali
AU - Algahtani, Ali
AU - Irshad, Kashif
AU - Islam, Saiful
AU - Wang, Tao
N1 - Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2021/10/1
Y1 - 2021/10/1
N2 - We have investigated the electrical and optical properties of Cd0.9Zn0.1Te:(In,Pb) wafers obtained from the tip, middle, and tail of the same ingot grown by modified vertical Bridgman method using I-V measurement, Hall measurement, IR Transmittance, IR Microscopy and Photoluminescence (PL) spectroscopy. I-V results show that the resistivity of the tip, middle, and tail wafers are 1.8 × 1010, 1.21 × 109, and 1.2 × 1010 Ω·cm, respectively, reflecting native deep level defects dominating in tip and tail wafers for high resistivity compared to the middle part. Hall measurement shows the conductivity type changes from n at the tip to p at the tail in the growth direction. IR Transmittance for tail, middle, and tip is about 58.3%, 55.5%, and 54.1%, respectively. IR microscopy shows the density of Te/inclusions at tip, middle, and tail are 1 × 103, 6 × 102 and 15 × 103/cm2 respectively. Photoluminescence (PL) spectra reflect that neutral acceptor exciton (A0,X) and neutral donor exciton (D0,X) of tip and tail wafers have high intensity corresponding to their high resistivity compared to the middle wafer, which has resistivity a little lower. These types of materials have a large number of applications in radiation detection.
AB - We have investigated the electrical and optical properties of Cd0.9Zn0.1Te:(In,Pb) wafers obtained from the tip, middle, and tail of the same ingot grown by modified vertical Bridgman method using I-V measurement, Hall measurement, IR Transmittance, IR Microscopy and Photoluminescence (PL) spectroscopy. I-V results show that the resistivity of the tip, middle, and tail wafers are 1.8 × 1010, 1.21 × 109, and 1.2 × 1010 Ω·cm, respectively, reflecting native deep level defects dominating in tip and tail wafers for high resistivity compared to the middle part. Hall measurement shows the conductivity type changes from n at the tip to p at the tail in the growth direction. IR Transmittance for tail, middle, and tip is about 58.3%, 55.5%, and 54.1%, respectively. IR microscopy shows the density of Te/inclusions at tip, middle, and tail are 1 × 103, 6 × 102 and 15 × 103/cm2 respectively. Photoluminescence (PL) spectra reflect that neutral acceptor exciton (A0,X) and neutral donor exciton (D0,X) of tip and tail wafers have high intensity corresponding to their high resistivity compared to the middle wafer, which has resistivity a little lower. These types of materials have a large number of applications in radiation detection.
KW - Hall measurement
KW - I-V measurement
KW - IR Microscopy
KW - IR Transmittance
KW - PL
UR - http://www.scopus.com/inward/record.url?scp=85116644607&partnerID=8YFLogxK
U2 - 10.3390/ma14195825
DO - 10.3390/ma14195825
M3 - 文章
AN - SCOPUS:85116644607
SN - 1996-1944
VL - 14
JO - Materials
JF - Materials
IS - 19
M1 - 5825
ER -