Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores

Yanze Wei, Jiawei Wan, Nailiang Yang, Yu Yang, Yanwen Ma, Songcan Wang, Jiangyan Wang, Ranbo Yu, Lin Gu, Lianhui Wang, Lianzhou Wang, Wei Huang, Dan Wang

Research output: Contribution to journalArticlepeer-review

71 Scopus citations

Abstract

In nature, sequential harvesting of light widely exists in the old life entity, i.e. cyanobacteria, to maximize the light absorption and enhance the photosynthesis efficiency. Inspired by nature, we propose a brand new concept of temporally-spatially sequential harvesting of light in one single particle, which has purpose-designed heterogeneous hollow multi-shelled structures (HoMSs) with porous shells composed of nanoparticle subunits. Structurally, HoMSs consist of different band-gap materials outside-in, thus realizing the efficient harvesting of light with different wavelengths. Moreover, introducing oxygen vacancies into each nanoparticle subunit can also enhance the light absorption. With the benefit of sequential harvesting of light in HoMSs, the quantum efficiency at wavelength of 400 nm is enhanced by six times compared with the corresponding nanoparticles. Impressively, using these aforementioned materials as photocatalysts, highly efficient photocatalytic water splitting is realized, which cannot be achieved by using the nanoparticle counterparts. This new concept of temporally-spatially sequential harvesting of solar light paves the way for solving the ever-growing energy demand.

Original languageEnglish
Pages (from-to)1638-1646
Number of pages9
JournalNational Science Review
Volume7
Issue number11
DOIs
StatePublished - 1 Nov 2020
Externally publishedYes

Keywords

  • Hollow structures
  • Light harvesting
  • Multi-shelled
  • Solar energy conversion

Fingerprint

Dive into the research topics of 'Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores'. Together they form a unique fingerprint.

Cite this