Effect of Sb/Bi doping sites on electronic structure and transport properties of Mg2Si0.375Sn0.625 alloy from first-principles calculations

Xin Li, Hui Xie, Bin Yang, Hong Zhong, Shuangming Li, Yalong Zhang, Ying Ma

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Defect formation energy, electronic structures, and transport properties of Sb/Bi-doped Mg2Si0.375Sn0.625 alloys were successfully determined by first-principles calculations. Si sites in these alloys were preferentially substituted by Sb and Bi atoms. At the same doping content, Sb atoms provided larger carrier effective mass and lower electron concentration compared with Bi atoms. Correspondingly, the maximum Seebeck coefficient and power factor value of Mg2Si0.365Sn0.625Sb0.01 alloy were −260 μVK−1 and 5.53 mWm−1 K−1, respectively. The highest electrical conductivity value of 1620 Scm−1 was achieved with Mg2Si0.375Sn0.615Bi0.01 alloy, due to higher electron concentration supplied by its Bi atoms. Experimental results were also obtained, verifying the reliability of calculations. These results provide theoretical reference for optimizing the performance of Sb/Bi-doped Mg2(Si, Sn)-based alloys.

Original languageEnglish
Article number115967
JournalMaterials Science and Engineering: B
Volume285
DOIs
StatePublished - Nov 2022

Keywords

  • Doping site
  • Electronic structure
  • Electronic transport property
  • First-principles calculation

Fingerprint

Dive into the research topics of 'Effect of Sb/Bi doping sites on electronic structure and transport properties of Mg2Si0.375Sn0.625 alloy from first-principles calculations'. Together they form a unique fingerprint.

Cite this