TY - GEN
T1 - Early active learning via robust representation and structured sparsity
AU - Nie, Feiping
AU - Wang, Hua
AU - Huang, Heng
AU - Ding, Chris
PY - 2013
Y1 - 2013
N2 - Labeling training data is quite time-consuming but essential for supervised learning models. To solve this problem, the active learning has been studied and applied to select the informative and representative data points for labeling. However, during the early stage of experiments, only a small number (or none) of labeled data points exist, thus the most representative samples should be selected first. In this paper, we propose a novel robust active learning method to handle the early stage experimental design problem and select the most representative data points. Selecting the representative samples is an NP-hard problem, thus we employ the structured sparsity-inducing norm to relax the objective to an efficient convex formulation. Meanwhile, the robust sparse representation loss function is utilized to reduce the effect of outliers. A new efficient optimization algorithm is introduced to solve our non-smooth objective with low computational cost and proved global convergence. Empirical results on both single-label and multi-label classification benchmark data sets show the promising results of our method.
AB - Labeling training data is quite time-consuming but essential for supervised learning models. To solve this problem, the active learning has been studied and applied to select the informative and representative data points for labeling. However, during the early stage of experiments, only a small number (or none) of labeled data points exist, thus the most representative samples should be selected first. In this paper, we propose a novel robust active learning method to handle the early stage experimental design problem and select the most representative data points. Selecting the representative samples is an NP-hard problem, thus we employ the structured sparsity-inducing norm to relax the objective to an efficient convex formulation. Meanwhile, the robust sparse representation loss function is utilized to reduce the effect of outliers. A new efficient optimization algorithm is introduced to solve our non-smooth objective with low computational cost and proved global convergence. Empirical results on both single-label and multi-label classification benchmark data sets show the promising results of our method.
UR - http://www.scopus.com/inward/record.url?scp=84896061560&partnerID=8YFLogxK
M3 - 会议稿件
AN - SCOPUS:84896061560
SN - 9781577356332
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 1572
EP - 1578
BT - IJCAI 2013 - Proceedings of the 23rd International Joint Conference on Artificial Intelligence
T2 - 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013
Y2 - 3 August 2013 through 9 August 2013
ER -