Abstract
A hybrid structure consisting of boron-doped porous carbon spheres and graphene (BPCS-G) has been designed and synthesized toward solving the polysulfide-shuttle problem, which is the most critical issue of current Li-S batteries. The proposed hybrid structure showing high surface area (870 m2·g−1) and high B-dopant content (6.51 wt.%) simultaneously offers both physical confinement and chemical absorption of polysulfides. On one hand, the abundant-pore structure ensures high sulfur loading, facilitates fast charge transfer, and restrains polysulfide migration during cycling. On the other hand, our density functional theory calculations demonstrate that the B dopant is capable of chemically binding polysulfides. As a consequence of such dual polysulfide confinement, the BPCS-G/S cathode prepared with 70 wt.% sulfur loading presents a high reversible capacity of 1,174 mAh·g−1 at 0.02 C, a high rate capacity of 396 mAh·g−1 at 5 C, and good cyclability over 500 cycles with only 0.05% capacity decay per cycle. The present work provides an efficient and cost-effective platform for the scalable synthesis of high-performance carbon-based materials for advanced Li-S batteries. [Figure not available: see fulltext.].
Original language | English |
---|---|
Pages (from-to) | 4562-4573 |
Number of pages | 12 |
Journal | Nano Research |
Volume | 11 |
Issue number | 9 |
DOIs | |
State | Published - 1 Sep 2018 |
Keywords
- boron doping
- carbon spheres
- graphene
- Li-S batteries
- potato starch